S20MT14P02

INVESTIGATING PLANT TRANSCRIPTIONAL RESPONSES TO ALLELOCHEMICAL AND HERBICIDE EXPOSURE USING DNA MICROARRAYS

USDA, ARS, Natural Products Utilization Research Unit, P. O. Box 8048, University, MS 38677, sbaerson@ars.usda.gov

DNA microarray technology is a powerful tool for monitoring gene expression on a genomic scale, allowing simultaneous measurement of changes in the expression of tens of thousands of genes. In recent years, this technology has been used to discover gene function, understand biochemical pathways and regulatory mechanisms, classify disease specimens, and discover drug target sites. Although not an invasive weed, the model plant Arabidopsis thaliana is an excellent organism for the study of responses to chemical inhibitors, as its genome has been fully sequenced and well characterized. With the development of a nearly full-genome GeneChip® array for Arabidopsis, it is now possible to monitor global changes in gene expression profiles in response to various chemical inhibitors. Benzoazoxolin-2(3H)-one (BOA), as a phototoxic allelochemical resulting from the degradation of DIBOA glucoside. As a first step in our investigations, we have analyzed transcriptional responses for approximately 23,000 Arabidopsis genes following exposure to sublethal concentrations of BOA. The largest functional category of BOA-responsive genes represented protein families known to participate in pathways for chemical detoxification, cell rescue, and defense, including some novel plant protein families with potential detoxification roles. The data significantly expand upon previous studies examining transcriptional responses to environmental toxins, and potentially provide novel insights into plant detoxification pathways.

S20MT18P01

REGULATORY PROGRESS, TOXICOLGY, AND PUBLIC CONCERNS WITH 2,4-D: WHERE DO WE STAND AFTER TWO DECADES?

James Bus¹ and Larry Hammond²

¹The Dow Chemical Company, Midland, MI, USA, busl@dow.com; ²Industry Task Force II on 2,4-D Research Data, Carmel, IN, USA, lhammond@indy.r.com

2,4-Dichlorophenoxyacetic acid (2,4-D) is member of the phenoxy family of herbicides and has major uses in agriculture, non-crop, forestry, turf, and aquatic weeds. First registered in 1946, 2,4-D is one of the most extensively studied herbicides. Beginning in 1980, regulatory agencies in North America and Europe initiated re-registration/re-evaluation activities for 2,4-D. These activities assure state-of-art testing for health and environmental evaluations of pesticides, and resulted in submission of >80 toxicology studies conducted to GLP standards using 2,4-D acid and its dimethylamine salt and 2-ethylhexyl ester forms. 2,4-D has low to moderate acute oral toxicity (rat LD₅₀ 699-896 mg/kg) and is not well absorbed through skin. In subchronic and chronic rat and mouse studies, overall dietary No-Observed-Effect-Levels (NOEL) were 15 and 5 mg/kg/day, respectively. 2,4-D was not carcinogenic in either rodent species, consistent with a lack of genotoxicity in vitro and in vivo test systems. Mild kidney toxicity was the primary toxic effect in these studies. 2,4-D was not a developmental toxicant in rat (overall NOEL 25 mg/kg/day) and rabbit (overall NOEL 75 mg/kg/day) studies, had a low potential for multi-generation reproductive toxicity and neurotoxicity (NOELs 5 mg/kg/day, respectively), and is not regarded as an endocrine disruptor. The various forms of 2,4-D were toxicologically equivalent. The overall toxicity NOEL of 5 mg/kg/day represents a margin of exposure (MOE) of 833 for commercial applicators and 50,000 for home and garden users, indicating 2,4-D meets safety standards for today and beyond. Additional 2,4-D information is available on the 2,4-D Industry Task Force II website www.24d.org.

S20MT18P02

ECOTOXICOLOGICAL EFFECTS CHARACTERIZATION OF ATRAZINE IN AMPHIBIANS

K R Solomon¹, L H du Preez², J A Carr³, J P Giesy⁴, T S Gross⁵, R J Kendall⁶, E E Smith⁶, G J Van Der Kraak⁶

¹Centre for Toxicology, University of Guelph, Canada, ksolomon@uoguelph.ca; ²School of Environmental Sciences and Development, Potchefstroom University for CHE, Potchefstroom, South Africa, dkdhp@gmu.ac.za; ³Department of Biological Sciences, Texas Tech University, Lubbock USA, james.carr@ttu.edu; ⁴Department of Zoology, Michigan State University, East Lansing, USA, jgiesy@aol.com; ⁵USGS Florida Caribbean Science Center and University of Florida, Gainesville, USA, Tim_S_Gross@usgs.gov. ⁶The Institute of Environmental and Human Health and Department of Environmental Toxicology, Texas Tech University, Lubbock, USA, ernest.smith@jheeb.bit.to.edu. ⁷Department of Zoology, University of Guelph, Canada, gvannderk@uoguelph.ca.

Although some studies have reported effects of atrazine in amphibians, there is a paucity of data on its potential effects, especially for endpoints related to development and reproduction. Laboratory and field studies were conducted in the USA and South Africa to assess whether atrazine caused adverse effects in frogs through endocrine-mediated mechanisms. Hypotheses tested related to effects mediated through estrogenic and androgenic mechanisms and how these may interact with gonadal development. Atrazine had no effects on plasma estradiol titres in frogs (Xenopus laevis) in laboratory exposures and in frogs from maize-growing sites where atrazine was present in the environment. Neither did it increase the activity of gonadal or brain aromatase in frogs exposed to atrazine. Laboratory and field studies showed no changes in plasma testosterone concentrations. No effects on larvnx dilator muscle size, an androgen-dependent developmental process, were observed in male X. laevis exposed in the laboratory or collected from maize-growing areas. Results from microcosm and field studies showed a low incidence of gonadal anomalies with no consistent concentration-response to atrazine exposures. There was no evidence of effects at the population level that were linked to atrazine exposures. Assessment of a causal link between atrazine exposure and effects in amphibians showed no temporal correlation, weak strength of association, and equivocal concentration-responses with respect to endocrine and gonadal effects. The authors wish to acknowledge Ecorisk Inc. and Syngenta Crop Protection, Inc. for their support of this research.

S20MT20P01

HYBRIDIZATION BETWEEN RED RICE AND RICE IN THE U.S.: IMPLICATIONS FOR GENE FLOW AND FERALITY

D R Gealy¹ and L E Estorninos Jr²

¹USDA-ARS, DB NRRC, Stuttgart, AR, dgealy@spa.ars.usda.gov; ²University of Arkansas, Fayetteville, lestorn@uark.edu

imidazolinone-resistant rice cultivars have been increasingly adopted in the southern U.S. since their initial introduction in 2002, largely due to the improved control of red rice in these systems. Although persistence, herbicide-resistance technology has raised concern about potential hybridization and gene flow between rice (Oryza sativa L.) and its weedy relative, red rice (Oryza sativa L.), and the potential development of herbicide-resistant or feral red rice populations. SSR marker analysis and phenotypic analysis of segregating populations are being employed in Arkansas to quantify, identify, and track red rice hybrids in grower and research fields. Outcrossing rates between red rice and herbicide-resistant or non-resistant rice have been variable, but nearly always less than 0.5%. Outcrossing depends on a number of factors, including red rice ecotype, rice cultivar, vertical and/or horizontal distances between panicles, synchronization of flowering periods, and seed production, as well as environment. Subsequent introgression of hybrid traits into the red rice population can be mitigated by additional factors including delayed flowering periods and/or low seed set in hybrids. Although gene flow between rice and red rice in U.S. rice fields is likely to remain a significant issue, establishment of feral populations of hybrid, weedy rice in non-rice or non-agricultural areas appears to be of relatively low risk due to the minimal availability of desirable O. sativa habitat outside of rice fields. Integrated strategies that address short- and long-term issues of red rice control and resistance management will be necessary to optimize sustainability of rice production in the U.S.
Two surveys were conducted to investigate weed flora and vegetation in 155 sampling sites accounting to a total area of 153hm² of summer crop fields in Anhui Province, China through visual scoring the level of weed infestation to crops in seven-scale. Data on weed communities and environmental factors collected were analyzed through the principal component analysis (PCA) and canonical correspondence analysis(CCA). 96 species of weeds subjected to 19 families were recorded. Results of multivariate analysis showed that the main factors influencing the structure and distribution of weed communities were the duration of soil submersion period, latitude, and soil type and pH. Based on the result of PCA, the 155 sampling sites could be divided into the southern, northern dry-land group and the paddy soil group three groups in geographic and floristic composition, and weed abundance. Both southern and northern dry-land groups with continuous summer crop and autumn dry-land crop double cropping system, distributed in the southern and northern parts respectively, had dominant species Galium aparine var. tenerum, which were regarded as Galium weed vegetation type. However, the former had main weeds Avena fusa and Veronica persica, whereas the latter had Galium tricornatum, Descurainia sophia and Lithospermum arvense. The paddy soil group, characterized by continuous summer crop and rice double or triple cropping systems prevailed in the south and central areas, had dominant weed Alopecurus aequalis and other main weeds: Malachium aquaticum, Stellaria alsine, Alopecurus japonicus, Lapsana apongonoides so that it might be called as Alopecurus weed vegetation type.

Key words: weed diversity; weed vegetation; weed communities; weed flora; principal component analysis (PCA); canonical correspondence analysis(CCA); summer crop; ecological interpretation.

Weedy rice has been a successful invasive in the Malaysian rice granaries since the late 1980’s. Field surveys were conducted in 1998 to 2002 to assess the extent of spread and infestation, and patch sizes of weedy rice in selected farm blocks in the rice granaries of Tanjung Karang, MADA, and Besut. These were augmented by field studies to assess patch dynamics of weedy rice in direct-seeded rice plots where standard control measures were used. These comprised pre-plant parquat application at 3 kg a.i./ha prior to two rounds of tillage operations followed by incorporation of molinate at 4.5 kg a.i./ha one day before sowing. Control plots were devoid of herbicide treatment. Both granary- and season-mediated differences prevailed in weedy rice infestations in the granaries surveyed, although the extent of infestation ranged from 1% to 100%. Patch sizes ranged from 0.56 m to 4.83 m in diameter in the control plots vis-à-vis 0.15 m to 0.62 m in plots subjected to standard agronomic practices, water regimes and control measures. Lloyd’s patchiness index (Ip) ranged from 1 to 68, denoting over-dispersed distribution patterns, and the occurrence of patterns were not repetitive within the period of study. The absence of seed dormancy, short maturation period, and the production of abundant seeds are some of the growth traits of weedy rice that enable it to establish and spread quickly. Differences in agronomic practices and control measures, and water availability are some of the attributes contributing to very apparent differences in degree of infestations of weedy rice in the granaries surveyed.

New techniques of biotechnology can stabilize yields and improve rural incomes, reduce negative environmental impacts, provide nutrient-enhanced and better quality food, and deliver vaccines and antibodies to improve health. While most benefits have occurred in industrial countries, the techniques have considerable potential for sustainable small-farm systems in developing countries. However, due to the potential environmental and health effects and socioeconomic implications, some of the new technologies are controversial. Biotechnology strategies must be country-specific, depending on needs and scientific capabilities. All countries, however, will need the capacity for developing technology policies and strategies, a strong regulatory framework, and scientific skills to make use of appropriate technologies. Activities, experiences, lessons learnt and challenges for the World Bank in supporting agricultural biotechnology will be presented.
A study was conducted to determine the half-life, degradation rate and metabolic formation pattern of metolachlor in a water/sediment system. Metolachlor degradation in a laboratory (water/sediment) was examined in Bojac sandy loam sediment that was incubated at 24°C. Samples were collected at day 0, 7, 14, 28, 42, 56, and 112 and analyzed for metolachlor and its major metabolites. The water/sediment oxidation-reduction potential took 28 d to reach -371 mV and the pH increased from 5.6 to 6.5 by the last sampling day (112 d). The half-life of metolachlor was 34 d in sediment and 8 d in the water phase. Metolachlor metabolites, ethanesulfonic acid (ESA) and oxamylc acid (OA) were detected in the water/sediment system. In sediment the two metabolites peaked by the 56th d of incubation and declined after that indicating transformation to other products. Greater quantities of OA and ESA were detected in sediment than in the aqueous phase. The production of OA and ESA in the water/sediment system occurred in the first 28 d when the system was at an aerobic redox state. Metolachlor can degrade under reducing conditions but its metabolites, ESA and OA are not significantly formed under anaerobic conditions.

The first synthesis of s-triazine chemicals for herbicidal screening took place 52 years ago, and first triazine was registered in 1956. There are 15 triazine herbicides currently in use as critical weed control tools in crops around the world. Atrazine is the most important herbicide for yield and cost benefits in North America for corn, sorghum and sugarcane production, and is essential for soil conservation programs. Atrazine and other triazine herbicides are vial tools in no-till, ecofallow and other soil conservation programs that have greatly reduced soil erosion. Farmers are making great progress with best management practices, which are preventing or reducing herbicide and nutrient levels in our water supplies. Data confirm that atrazine levels in water are decreasing significantly. In 2003, the US EPA completed a 9-year review of hundreds of new studies on the safety and benefits of atrazine. Their conclusions are that atrazine can be used safely and is not likely to cause cancer in humans. Additional monitoring for atrazine in water, site-specific management plans and new studies in emerging areas of amphibian research are required as part of the reregistration of atrazine. The results of this comprehensive review support the safety and long-term availability of atrazine for farmers and serves as a case study for scientific reviews of chloro-triazine herbicides. This paper will cover environmental fate and effects, toxicology, benefits and risks, analysis, biology, history and other aspects of triazine herbicides, which are documented in a soon to be published book on The Triazine Herbicides.

A regional watershed scale project (Mississippi Delta Management Systems Evaluation Area) was established to assess effects of conservation land management practices on environmental quality. The focus was on three watersheds that drain into oxbow lakes (Thigman, Beasley, and Deep Hollow). Of the three watersheds, the greatest intensity of conservation practices was implemented at Deep Hollow (1996 to 2000), and the least at Thigman. Only edge-of-field practices (e.g., buffer strips, erosion control pipes) were used in Beasley watershed until 2000. All watersheds were primarily planted to cotton and soybean in 1996, but by 2002, land use patterns shifted to include more corn, soybean, and in Beasley watershed, trees. Lake water was evaluated for herbicides (fluometuron, atrazine, cyanazine, and metolachlor), total solids, phytoplankton, and nutrients from 1996 to 2002. Water quality of the three watersheds was dynamic and was affected by land management practices and hydrology. Prior to initiation of improved practices, lake ecology was impaired in all lakes due to sedimentation. After management practices were implemented, primary productivity of lakes was restored. Overall, highest sediment levels, algal and bacterial populations, enzyme activities and herbicide levels (atrazine and metolachlor for corn production) were observed in Thigman Lake. Implementation of reduced tillage and glyphosate resistant crops (cotton / soybeans) (after 2000) in Beasley watershed resulted in lower levels of suspended sediments and herbicide concentrations in lake water. Conversion of Deep Hollow watershed from conservation practices back to conventional tillage after 2000 increased fluometuron levels in lake water with little effect on suspended sediment.

The world-wide problem of narcotic drugs stems largely from the illicit cultivation of Cannabis sativa (marijuana), Erythroxylum spp. (coca), and Papaver somniferum (opium poppy). The solution can be approached as a specialized weed control problem, albeit where the target is a crop. Among the weed control methods, herbicide use is most effective for cultivation that is large-scale, difficulty accessible, or grown in dangerous locations. Environmental stewardship and government policy mandate understanding the impacts of herbicides used, or considered, for narcotic plant control. The overarching objective of a long series of USDA experiments was to determine how such herbicides behave in (especially) tropical sites associated with coca and poppy cultivation in Latin America. This was done by (a) determining herbicide persistence and leaching in test plots or actual coca fields in Peru, Panama, and the U.S.; (b) isolating soil bacteria capable of utilizing test herbicides; (c) conducting algal toxicity studies; and (d) observing environmental impacts from large-scale application of glyphosate on Colombian coca. The behavior of two potential coca control herbicides was notably consistent over three tropical locations, with distinctly shorter half-lives than typically reported for temperate areas. Due to unique risks (hostile ground-fire, physical hazards) associated with aerial application, especially for coca and poppy eradication, herbicides are applied at higher altitude and speed than done for conventional weed or brush control. Despite this, off-target collateral damage has been remarkably low, and environmental risks seem minimal.
S22MT11P01

AFTER THE GORSE HAS BOLTED—SEVEN HABITS OF HIGHLY EFFECTIVE WEED PROGRAMMES

A I Popay and S M Timmins

1Department of Conservation, Private Bag 112, Hamilton, New Zealand, ipopay@doc.govt.nz; 2Department of Conservation, PO Box 10420, Wellington, stimmins@doc.govt.nz

Proactive management is essential for handling invasive plants that have escaped border controls or garden boundaries, and have become established in and threaten ecosystems. Establishing plans and structures allows us (country, industry or agency) to deal quickly with new weeds, and effectively with widespread weeds. In New Zealand, over 2000 invasive plant species threaten ecosystems. Such procedures, developed for New Zealand’s conservation sites, apply equally well to weed management by other agencies and in other countries.

The seven essential ingredients are:

1) **Get ready** - have plans in place before the next batch of weeds turns up.
2) **Objectives** ensure we know where we are going—what we want to do to the weed and what we want to achieve in the affected environment.
3) **We need to prioritise** which weeds are worth controlling and at which sites weed control is most beneficial.
4) **Getting beyond demonising weeds**, we must **seek to understand** the way weeds spread and their impact on ecosystems.
5) **Getting everyone involved** requires coordination between organisations. The public also plays its part in weed spotting, weed pulling and behaving well.
6) **To put this into practice**, we need to **actively control weeds**. We can eradicate or contain weeds, control them to protect precious sites or, occasionally, give up. The management practice we choose depends on the weed and the location. It’s important to get it right.
7) **Having set the objectives**, we must **sharpen the saw**—assess our progress using scientifically robust monitoring, evaluate, and if necessary rejig our future management.

S22MT11P02

INVASIVE WEEDS – INVOLVING THE COMMUNITY IN EFFECTIVE MANAGEMENT

B J Wilson, S Vitelli and G W Fisher

1Queensland Department of Natural Resources, Mines and Energy, Land Protection, GPO Box 2454, Brisbane, Australia. 4001, Bruce.Wilson@nrm.qld.gov.au

Invasive weeds affect the whole community through economic, environmental and social impacts. Their management involves many variables such as land use (eg national park, farm), size of land parcels, type of land owner (eg individual, State government) and weed status - potential threats (not yet in the area), early invaders and widely established.

Resources for weed management come from land owners, and also volunteer groups, sponsors and government. The resources are usually insufficient for complete control. Priorities must be set. An ongoing project is providing support to the development of local government area pest management plans as the means to set local priorities. The objective is to ensure planning that involves the local community, as well as representatives of government lands, to arrive at priorities. Planning results in participants having an understanding and commitment to achieving the preferred future, and thus a greater chance of success.

The requirement for local governments to sponsor the development of a pest management plan for their area has been incorporated in new Queensland government legislation, to ensure this planning occurs. Each local government must establish a working group to assist, the plan must consider the interests of the community and a draft plan must be made available for public comment.

Consistency across Queensland is provided by a set of principles, the Queensland Weeds Strategy and Guidelines for major weed species. A resource kit provides a means to develop a local plan that links to the principles and the Strategy.

S22MT11P03

OPERATION RAPID RESPONSE – DEALING WITH THE POTENTIAL INCURSION OF BRANCHED BROOMRAPE (OROBANCHE RAMOSA LINNAEUS) INTO VICTORIA, AUSTRALIA.

David A. McLaren1,2, Kate Blood3 and Brian Dowley

1Primary Industries Research Victoria (PIRVic), Department of Primary Industries, Frankston Centre, PO Box 48, Frankston 3199, Australia, david.mclaren@dpi.vic.gov.au
2Catchment and Agriculture Services, Department of Primary Industries, PO Box 7, Beaumont 3733, Australia, kate.blood@dpi.vic.gov.au
3Catchment and Agriculture Services, Department of Primary Industries, PO Box 120, St Arnaud 3478, Australia, brian.dowley@dpi.vic.gov.au

The Victorian Government in Australia is placing a high priority on potential new and emerging weeds. Preventing the establishment of serious weeds is a worthwhile government investment. It saves money, protects the environment and can reduce the impact on human health. The Department of Primary Industries, and the Department of Sustainability and Environment have developed the Weed Alert Rapid Response program to target potential, new and emerging weeds in the State of Victoria. The main focus is on surveillance, collection, identification, assessment and response. A network of Weed Spotters has been established to look for new weeds and report them when found. More intensive surveillance programs are being conducted for serious potential weeds. An outbreak of the parasitic weed, branched broomrape (Orobanchus ramosa) in the Murray Bridge region of South Australia is threatening agricultural production in Victoria, Australia. Traceback operations in South Australia identified 27 Victorian properties linked to the infestation in South Australia. To stop this potential weed incursion, the Victorian Government has set up an “Operation Rapid Response – Branched Broomrape Team” in much the same way as a team is put together to deal with natural disasters. This team has overseen the surveillance for this weed in Victoria and raised its awareness with key stakeholders and the Victorian community.

S22MT11P04

NATURALISED LEGUMES IN AUSTRALIAN TEMPERATE NATURAL ECOSYSTEMS

J Emms, J G Virtue, C Preston and W D Bellotti

1CRC for Australian Weed Management, PMB1, Waite Campus, Glen Osmond, SA 5064, Australia, Email: jason.emms@adelaide.edu.au
2School of Agriculture and Wine, University of Adelaide, PMB1, Waite Campus, Glen Osmond, SA 5064, Australia
3Animal and Plant Control Commission, GPO Box 2834, Adelaide, SA 5001, Australia
4School of Agriculture and Wine, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
5CRC for Plant Based Management of Dryland Salinity, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Exotic legumes are common invaders of natural ecosystems in temperate Australia but it is thought that species might differ in their capability to invade and also impact in these systems. The object of this study was to examine legumes with similar residence times in Australia to find which species have been able to naturalise and invade natural ecosystems, what degree of impact they are having upon these systems and collate information on their life form, growth habit and origin. Nursery catalogues from the period 1905-1933 were located and thoroughly searched for all legumes listed. Recent floras and plant censuses were searched and all alien legumes noted. Finally a questionnaire was created and distributed to those involved with environmental weeds and natural ecosystems in temperate Australia to determine what introduced legumes are present and what level of impact they are having. Exotic legumes are present in the natural ecosystems of temperate Australia and a number are considered to be having significant impacts on biodiversity and ecosystem function. The majority of naturalised legumes are from a European origin. Annual species have a much higher naturalisation rate (59.3%) than perennial species (26%) but perennial legumes were considered to have higher impacts in natural ecosystems. Despite their ability to readily naturalise in temperate Australia, non-climbing herbaceous legumes would appear to present lower risks to Australian temperate natural ecosystems than woody perennial legumes.
S22MT11P05
THE DISTRIBUTION AND SPREAD OF NASSELLA TRICHOTOMA (SERRATED TUSSOCK) WITH A VIEW TO IMPROVING DETECTABILITY, CONTAINMENT AND ERADICATION

T F Cowan1, B M Sindel1, R S Jessop1 and J E Browning2

1School of Rural Science and Agriculture, The CRC for Australian Weed Management, The University of New England, Armidale, NSW 2351 Australia.
2New England Weeds Authority, 129 Ruisden St Armidale NSW 2350 Australia.

Originating in South America, Nasella trichotoma (serrated tussock) infests a considerable area of valuable grazing land in New Zealand, South Africa and Australia. N. trichotoma has been the cause of severe losses to farmers as it reduces the productivity of grazing land and livestock, and increases weed control costs. When introduced into a new area which provides a suitable growing environment it can rapidly dominate the landscape as it produces large amounts of wind-dispersed seed and is highly unpalatable to stock. N. trichotoma has recently colonised the Northern Tablelands of New South Wales, Australia though most infestations are currently scattered and consists of a small number of individual plants. In 1998/2000 the N. trichotoma infestations in a 20 km by 30 km area of the Northern Tablelands were located and recorded using a Global Positioning System (GPS). The number and maturity of plants were recorded at each GPS site. The process was repeated in 2003/2004. Initial results from the mapping process were replicated small plot trials were conducted with a range of commonly-used herbicides. Volunteers and community groups have been encouraged to conduct control on public lands. The program is successful with the original site now being controlled by occasional hand-weeding of seedlings, reports of new infestations from the public and ‘permits’ for two herbicides.

S22MT11P06
MANAGEMENT OF A NEW INVASIVE WEED IN NEW SOUTH WALES, AUSTRALIA – ASYSTASIA GANGENTICA SSP. MICRANTHA – A CASE STUDY

A M Storrie1, G Prichard2 and J R Hosking3

1NSW Agriculture & CRC for Australian Weed Management, Tamworth Agricultural Institute, RMB 944, Tamworth, NSW 2340, Australia, A.M.storrie@agric.nsw.gov.au
2Port Stephens Council, 116 Pacific Highway, Raymond Terrace, NSW 2324, Australia, graham.prichard@ports.htm.nsw.gov.au
3Australia.

Asystasia gangetica ssp. micrantha is the subspecies of A. gangetica causing problems in Australia. It is thought to have been cultivated as a garden plant prior to naturalising. It is a perennial mat-forming creeper that smother other vegetation. Asystasia gangetica ssp. micrantha is the subspecies causing major problems in SE Asia. The first record of naturalised plants of this subspecies in Australia was from Boat Harbour, NSW, in July 1999. A program has been implemented to determine the extent of the problem, how to manage existing infestations and to determine impact of the subspecies. An awareness program was implemented to determine the extent of the problem. Colour brochures were distributed to nurseries and at field days. Live specimens were shown at field days and articles published in the print media. No herbicides were registered for control so replicated small plot trials were conducted with a range of commonly-used herbicides. Volunteers and community groups have been encouraged to conduct control on public lands. The program is successful with the original site now being controlled by occasional hand-weeding of seedlings, reports of new infestations from the public and ‘permits’ for two herbicides.

S22MT13P01
PROMOTIVE ALLELOPATHIC EFFECTS OF RICE (ORYZA SATIVA L.) ON SEED GERMINATION OF MONOCHORIA VAGINALIS VAR. PLANTAGINEA AND HETERENTHERA LIMOSA (SW.) WILD.

Y Takeuchi1, SH Chae2, D Sato1, K Yoneyama1 and KU Kim3

1Center for Research on Wild Plants, Utsunomiya University, Utsunomiya 321-8505, Japan, yakeuchi@cc.utsunomiya-u.ac.jp;
2Cheonan Yonam College, Cheonan, 330-802, Korea, shchae@yonam.ac.kr;
3College of Agriculture & Life Sciences, Kyungpook National University, Taegu, 702-701, Korea, kskkimkim@knu.ac.kr

Monochoria vaginalis var. plantaginea and Heterenthera limosa (Sw.) Wild are very serious aquatic weeds in paddy fields, growing vigorously and causing a reduction of rice yield. In recent years, they become more serious problem in Japan and Korea where the number of the weeds was increased by direct-seeding and infant seedling culture as a method of transplanting. This study was conducted to determine the effects of rice seeds, seedlings, hulls and straw on the germination of these weeds. H. limosa seeds germinated in the light under flooded conditions, but the seeds also germinated in the dark under flooded conditions when they were grown with rice cultivars such as Drew, Rexmont, Sathi, PI 312777, Kouketsumochi and Koshihikari. The results suggested that seeds, hulls, seedlings and straw of rice regardless of cultivars contained stimulatory substance(s) that promote seed germination of M. vaginalis and H. limosa. Seed germination of these two weeds was stimulated by ethylene, carbon dioxide, and low oxygen conditions. In paddy fields, rice seeds and seedlings release ethylene and carbon dioxide, and consume oxygen under irrigated water and soil. In particular, more ethylene is released from germinating rice seeds and seedlings than from older rice plants. Rice straw promoted also the seed germination of these weeds in the paddy fields. Therefore it is concluded that rice regardless of cultivars may play an important role in inducing germination of these weeds.

S22MT13P02
ALLELOPATHIC POTENTIAL OF PARTHENIUM Hysterophorus IN SOUTH AFRICA

C F Reinhardt1, S Kraus2, F Walker2, L Foxcroft2 and K Hurle2

1Department of Plant Production and Soil Science, University of Pretoria, Pretoria 0002, South Africa, E-mail: creinhardt@bioparic.up.ac.za
2Institute for Phytochemistry, Department of Weed Science, University of Hohenheim, 70593 Stuttgart, Germany, E-mail: k hurle@uni-hohenheim.de
3Alien Plant Division, Kruger National Park, Skukuza 1350, South Africa, E-Mail: Llewellyn@parks-sa.co.za

Allelopathic effects from the nonindigenous invasive plant Parthenium hysterophorus and its native species have been linked to its marked ability to displace desirable plants. In bioassays the early growth and development of test species, including monocots and dicots, were significantly impeded by aqueous infusions of P. hysterophorus. Infusions prepared from leaves were particularly potent. Test species responses included germination inhibition/retardation, and inhibition of both shoot and root growth, with the latter growth parameter proving especially sensitive. Through dipping of P. hysterophorus leaves in organic solvents (methylene chloride or tert-butyl methyl ether [TBME]), biological activity could essentially be transferred from leaves to solvent. This finding prompted an electron-microscopy study of leaf surfaces. Five trichome types were identified on leaf surfaces, and the only glandular type (capitate-sessile trichome) was selectively sampled and analyzed for the presence of the sesquiterpene lactone, parthenin, whose occurrence and bioactivity have been reported by others. Less well known is the exact location of these glands on leaves, and parthenin amounts produced by them, becomes plausible that a P. hysterophorus population could effectively displace other plants, and hence, severely affect biodiversity in infested areas.
Parthenium hysterophorus L., an exotic weed from tropical America, has established itself throughout India due to its strong invasive potential. Though allelopathic nature of the weed is well known, little has been done regarding its interference and possible interaction of its allelochemicals with soil chemistry. For this the soil previously not infested with the weed was amended with different amounts of Parthenium residues with a view to determine phytotoxic effects on other plants vis-à-vis changes in soil chemistry and phenolic content. Growth studies conducted in the laboratory as well as under green house conditions indicate inhibitory effect of the residues amended in soil on the growth and establishment of native species Cassia occidentalis and Bidens pilosa. Furthermore, the growth and establishment of the test plants was greatly reduced in the soil amended with residue extracts. All amended soils were analyzed for pH, conductivity, organic carbon, organic matter, total phenolics, available nitrogen, carbon and organic matter increased compared to the unamended soil. The conductivity, organic carbon and organic matter increased compared to the unamended soils. Presence of significantly higher amount of phenolics in all amended soils indicates their possible involvement in the growth inhibitory effects and their interactions with soil chemical properties. This further gets confirmed from strong correlation between phenolics and various soil properties. The study, therefore, concludes that P. hysterophorus affects the growth and establishment of other plants through the release of phenolics, which also interfere with soil chemistry.

S22MT13P04
WEED SUPPRESSING ABILITY OF PARTHENIN - AN ALLELOCHEMICAL FROM PARTHENIUM HYSTEROPHORUS

D R Batish1, H P Singh1, R K Kohli1,2, and D B Saxena1

1Panjab University. Department of Botany, Chandigarh 160 014, India, E-mail: daizybatish@yahoo.com; 2Panjab University, Centre for Environment and Vocational Studies, Chandigarh 160 014, India, E-mail: rkkohli45@yahoo.com; 3Indian Agricultural Research Institute, Division of Agricultural Chemicals, New Delhi 110 012, India

In order to overcome the adverse effects of synthetic herbicides on environment and human health, efforts are being made to discover alternatives. In this direction, natural plant products / allelochemicals offer one of the most promising source. These are not only eco-friendly but also provide novel target sites of action for exploitation for weed management. Parthenium, a sesquiterpene lactone, is a natural constituent of ragweed parthenium (Parthenium hysterophorus) and imparts the weed a number of properties such as allelopathy, autoxotoxicity, and allergenicity. A study was conducted to explore the allelopathic effect of parthenin towards some weed species with a view to determine its herbicidal activity. The weeds used in the study were barnyard grass (Echinochloa crus-galli), coffee weed (Cassia occidentalis), and wild oat (Avena fatua). Germination and early growth of these weed species was significantly reduced in response to different concentrations of parthenin ranging from 500 to 2000 µM. At 1000 and 2000 µM parthenin, a drastic reduction in growth of weed species was observed. When the one-month-old plants were spray treated with parthenin, a significant reduction in chlorophyll content and respiratory ability was found compared to control indicating thereby the effect of parthenin on photosynthetic and respiratory activity. Even the rate of transpiration was significantly reduced. These results indicate that parthenin possesses a weed suppressing ability and can be exploited as a natural herbicide.

S22MT13P05
ALLELOPATHIC INFLUENCE OF SOIL PLANTED TO AMARANTHUS CRUENTUS L. ON TWO TOMATO (LYCopersicon ESCULENTUM MILL.) CULTIVARS

J Allemann1 and F Denner2

1Department of Soil, Crop and Climate Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa, AllemannJ.Sc1@uos.ufs.ac.za; 2ARC-Roodplaat Vegetable and Ornamental Plant Institute, Private Bag X293, Pretoria, 0001, South Africa, Freddie@viopl.agric.za

Amaranthus cruentus L. is being evaluated as a potential high value niche market crop for small-scale farmers in South Africa. This is largely due to the demand for organically produced seed for the European health food market where it is used in a variety of products. During the 2001/02 season a pilot planting took place on a farmer’s field at Rust de Winter, near Pretoria, South Africa. A year later, during the 2002/03 season, the farmer planted tomatoes on this field. Problems with the growth and development of the tomato plants were noticed within a fairly short period of time. Investigations revealed no nutritional or pest and disease problems and it was decided to see if soil problems were the cause of the trouble. Soil was collected from the problem field, as well as from an adjacent field with similar soil. Two tomato cultivars (Rodade and Floradade) were grown in pots containing these soils in an air-conditioned glasshouse under natural light conditions. Plants grown in soil containing soil from the amaranth, rye, and mustard germination by 53, 58, 24, and 0 %, respectively. Full-strength methanolic extract suppressed germination by 53, 58, 24, and 0 %, respectively. Full-strength methanolic extract suppressed germination by 83, 69, 0, and 0 %, respectively. Mustard exhibited the greatest sensitivity to both the extracts. Methanolic extract caused more inhibition in seed germination. Berseem clover was stronger inhibitor of seed germination. Therefore, the quantities of allelochemicals in these clovers are different. Field bindweed had more tolerance to these allelochemicals.

S22MT13P06
ALLELOPATHIC POTENTIAL OF TRIFOLIUM RESUPINATUM AND T. ALEXANDRIUM ON SEED GERMINATION OF FOUR WEED SPECIES

F Maighany1, M Najafpour2, and J Khalghani3

1Plant Pests & Diseases Research Institute, P.O.Box. 19395-1454, Tehran, Iran, fmaighany@yahoo.com; 2Islamic Azad University, Qazvin Branch, Qazvin, Iran; 3Islamic Azad University, Sari Branch, Sari, Iran

An experiment was conducted to determine if berseem and persian clovers contained water- and methanol-soluble allelochemicals that affect seed germination of Amaranthus retroflexus, Convolvulus arvensis, Secale cereale, and Sinapis arvensis. Aboveground tissue of the clovers was collected and dried. 5 gr of dried tissue added to 100 ml of distilled water or methanol, and agitated for 12 hr. 3 concentrations of aqueous and methanolic extracts were used: full-strength (33.3 g/L), half-strength (16.7 g/L), and quarter-strength (8.3 g/L). The weed seeds were placed in petri dishes contained 10 ml of the legume extract, or distilled water. Seed germination declined progressively with increasing concentration of the extracts. In persian clover: full-strength aqueous extract suppressed field bindweed, amaranth, rye, and mustard germination by 53, 58, 24, and 0 %, respectively. Full-strength methanolic extract suppressed germination by 53, 58, 24, and 0 %, respectively. Mustard exhibited the greatest sensitivity to both the extracts. Methanolic extract caused more inhibition in seed germination. Berseem clover was stronger inhibitor of seed germination. Therefore, the quantities of allelochemicals in these clovers are different. Field bindweed had more tolerance to these allelochemicals.

68
S22MT13P07

NATURE OF RICE STRAW PHYTOTOXICITY

Inderjit1 and C L Foy2

1Department of Botany, University of Delhi, Delhi 110007, India, Email: allelopathy@satyam.net.in; 2Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, USA, Email: cfoy@vt.edu

Unharvested stalks of rice (Orzya sativa L.) left in the field generally interfere with the growth of the next season crop. Incorporation of burned rice straw may cause nutrient depletion, particularly for nitrogen. Once rice straw (burned and unburned) is incorporated into the field, water-soluble compounds become available in the soil. A series of studies was carried out with the following objectives: (a) to study the effect of rice straw (burned and unburned) leachate- incorporated soil on seedling growth and physiological parameters of mustard, (b) to study modification in rice straw phytoxcicity with N-fertilization, activated charcoal, and abiotic soil, and (c) to study selected soil characteristics of rice straw-incorporated soil. Rice straw (burned and unburned) leachate was prepared using water as a medium. Soils were amended with rice straw leachate and also modified with N-fertilization or charcoal. Mustard (Brassica napus var. toria L.) was used as an assay species to assess the phytoxic effects, if any, of various amended soils. In addition, data on soil chemistry of amended soils, and physiological parameters of mustard when grown in amended soil, were also collected. In general, root growth of mustard was suppressed in the presence of rice straw leachate added to soil. The observed growth inhibition, however, was not eliminated when mustard was grown in soil treated with burned rice straw leachate. The present study showed that rice straw leachate interferes with seedling growth of mustard and water-soluble phenolics play an important role in mustard seedling growth inhibition.

S22MT14P01

VERY-LONG-CHAIN FATTY ACID ELONGASES AS HERBICIDE TARGETS

Klaus Tietjen and Sandra Tenkamp

Bayer CropScience AG, Target Research, Geb. 6240, 51368 Leverkusen, Germany; E-mail:
Klaus.Tietjen@bayercropscience.com

To study the mode of action of flufenacet, benfuresate and related herbicides we analyzed phenotype and gene expression of herbicide-treated Arabidopsis thaliana plants. Treatments caused phenocopies of the known Arabidopsis mutant fiddlehead, displaying fused organs and the typical fiddlehead-like inflorescence. Herbicide treatments of other plant species, including monocots, also gave rise to analogous organ fusions. The FIDDLEHEAD gene encodes a putative very-long-chain fatty acid elongase (VLCFAE), which corroborates earlier biochemical results pointing to the inhibition of VLCFA synthesis as mode of action of flufenacet. Gene expression profiles of herbicide-treated Arabidopsis plants provided additional clues in support of inhibition of VLCFA synthesis. Of the 21 genes encoding VLCFAEs from Arabidopsis, we could express 17 heterologously in Saccharomyces cerevisiae. Six of these VLCFAEs were found to be enzymatically active with endogenous yeast fatty acid substrates. The spectrum of VLCFAE accumulated in expressing yeast strains was determined by gas chromatography/mass spectrometry. The active VLCFAEs revealed distinct patterns of differential sensitivity to different herbicides, while yeast endogenous VLCFA production, which involves its unrelated elongase (ELO) for sphingolipid synthesis, was unaffected. These findings pinpoint VLCFAEs as the target of the widely used herbicides, which have been in commercial use for 50 years, and provide important clues as to why spontaneous resistance to this class is rare.

S22MT14P02

INVERSION OF D-PHOSPHINOTHRICIN TO THE HERBICIDAL L-ENANTIOMER VIA EXPRESSION OF A MODIFIED D-AMINO ACID OXIDASE IN PLANT TISSUES

T R Hawkes, R C Viner, P A Thompson, R P Dale, P H Hollinshead, P W Howe, A J Greenland, E J Heard and W A Pline-Srnic

1Syngenta, Jealott’s Hill International Research Station, Jealott’s Hill, Bracknell, Berks U.K. RG42 6EY; Tim.Hawkes@syngenta.com

Conditional male sterility is a useful trait for hybrid crop production which may be obtained via genetic engineering of female parental lines for localized expression of certain enzymes within male floral tissues. The expressed enzyme is capable of converting a non-phytoxic substrate to a phytotoxic one. Engineered lines thus fail to produce viable pollen following spray application of the non-phytoxic substrate but are otherwise unaffected. Here we used D-phosphinothricin, resolved in 97% EE from the racemate, as the ‘non-phytoxic substance’ and a mutant D-amino acid oxidase as ‘converting enzyme’. D-phosphinothricin was a very poor substrate of the D-amino acid oxidase (DAMOX) from Rhodotorula gracilis. DAMOX was therefore modified by site-directed mutagenesis to generate mutant forms which oxidized D-phosphinothricin efficiently. Tobacco plants engineered to express mutant DAMOX under operable control of a CMV 35S promoter region exhibited much more damage after spray treatment with D phosphinothricin than did similarly-treated wild type control plants. Transgenic tobacco lines engineered to express mutant DAMOX from the anther-specific tap1 promoter region exhibited relatively little vegetative damage after spraying. However in some lines male fertility was profoundly reduced. Flowers which developed prior to spraying were normal and fertile, whereas flowers which developed afterwards exhibited normal stigmas but anthers loaded with little or no pollen. These flowers went on to form pods containing little or no seed. Thus, anther specific expression of a mutant D-amino acid oxidase combined with spray application of D-phosphinothricin can be used to create conditional-male sterility.

S22MT14P03

REGULATION AND FUNCTION OF HERBICIDE SAFENER-INDUCIBLE GLUTATHIONE S-TRANSFERASES IN THE MODEL GRASS SPECIES TRITICUM TAUSCHII

D E Riechers1, Q Zhang1 and F X Xu1

1Department of Crop Sciences, University of Illinois, 1102 S. Goodwin Avenue, Urbana, Illinois, USA, <riechers@uiuc.edu>

We are using the diploid wheat, Triticum tauschii, as a model plant to study safener-inducible herbicide detoxification genes (such as the glutathione S-transferases; GSTs) in cereal crops. The objective of our research is to better understand the expression of GST genes and determine how they are regulated by herbicide safeners at the molecular level. In addition to using molecular techniques to examine safener-induced expression of GST genes, we are utilizing proteomics techniques to identify the entire complement of GSTs and novel proteins (non-GSTs) that are regulated in response to safener treatment in dissected coleoptiles. Proteins were extracted from isolated coleoptiles, analyzed on two-dimensional protein electrophoresis gels (resolved by isoelectric point in the first dimension, and molecular mass in the second dimension), and the identity of individual protein spots was determined by mass spectrometry (MS) of peptide fragments derived from protease-digested proteins in the gel. In addition to MS analysis of individual proteins from the gel, we have also performed 2-D immunoblots probed with two different GST antibodies. Results from our proteomics studies show that the majority of safener-induced proteins in the coleoptile are either phi or tau class GSTs, which vary greatly in both isoelectric point (pI 5 to 7) and molecular mass (24 to 29 kDa). Other safener upregulated proteins have also been identified that are not GSTs, but may be involved in the safener response/herbicide detoxification pathway in wheat coleoptiles. MS data and immunoblot analyses indicate that significant amounts of post-translational modification of GST proteins may be occurring.
DICHLOROMETHYL KETAL STRUCTURE AFFECTS THE EXPRESSION OF GLUTATHIONE S-TRANSFERASE ISOFORMS IN MAIZE

I Jablonka, I Cummins, D Dixon and R Edwards

1Institute of Chemistry, Chemical Research Centre, Hungarian Academy of Sciences, PO Box 17, H-1525 Budapest, Hungary; jabl@chemres.hu; 2Department of Biological Sciences, University of Durham, Durham DH1 3LE, UK; Robert.Edwards@durham.ac.uk.

A strong correlation between the ability of a safener to increase glutathione S-transferase (GST) activity and its efficacy in protecting maize from herbicide injury has been demonstrated. The herbicide safener MG-191 and its analogs such as open-chain (1) and cyclic (2) dichloromethyl ketals were tested for their ability to differentially enhance the expression of members of the GST superfamily in maize.

The GSTs were isolated from safener-treated plants, resolved by gel electrophoresis and detected by Western blotting, using antisera raised to ZmGSTF1-2 and ZmGSTU1-2. GST activity of shoot and root extracts were determined using CDNB, acetochlor and fluorodifen substrates. Higher inducing effect on GST(CDNB) activity was detected in roots than in shoot tissues by both ketal types. Using fluorodifen substrate the enhancement of GST activity was detected the highest following MG-191 (n=3) treatment in shoot tissue. With open-chain ketals the inducibility of GST activity by derivative 1 (n=3) exceeded the effect of other derivatives. Nevertheless, no correlation was found between enzyme inducibility and their safening effectiveness. In Western blot experiments when the heterodimer ZmGSTF1-2 was used the expression of constitutive ZmGSTF1 and inducible ZmGSTF2 was enhanced only by MG-191 and its 6-membered ring analog (2, n=1) in shoots. These molecules were also the most potent inducers of the expression of ZmGSTU1 in shoot tissues. However, in roots the open-chain ketals were very active on the expression of this isozyme. Our results demonstrate that the safener structure plays a decisive role in specific expression of GSTs mediating the detoxication of herbicides.

CALIFORNIA PERSPECTIVE ON HERBICIDE REGULATION

Regina Sarracino

California Dept. of Pesticide Regulation, P.O. Box 4015, Sacramento, CA 95812-4015, rsarracino@cdpr.ca.gov

The California Department of Pesticide Regulation’s (DPR) comprehensive pesticide regulatory program requires that herbicides be registered by DPR before sold or used in the state. The US Environmental Protection Agency first registers products, but states can have additional laws and review process. This paper presents California registration requirements, including comparison to U.S. EPA’s program using U.S. laws/ regulations and California laws/regulations as information sources. California regulation begins with product registration; scientific data must be reviewed and found acceptable prior to registration, followed by worker/user safety activities, illness reporting, environmental monitoring, groundwater sampling, reevaluation of existing products, and pesticide use enforcement. California is a large state with 10,000 registered pesticide products and over 200 commercial crops, in addition to non-agricultural uses. Data required to register an herbicide in California and the U.S. includes acute toxicity data on the formulated product, chemistry, efficacy, fish and wildlife if applicable, phytotoxicity on plants, and residue chemistry data on food crops. For a new active ingredient in California, chronic toxicity data is required and, for the first agricultural use, environmental fate groundwater protection data. Court legal actions in 2004 may alter some requirements. USEPA and California share certain data reviews, conduct concurrent review of new reduced-risk products, and together set residue tolerances for some pesticides used on California crops. Both USEPA and DPR participate in international harmonization activities regarding data and labels.
REGULATION OF PESTICIDES IN INDIA WITH SPECIAL REFERENCE TO HERBICIDES

Dr. B.S. Phogat

Central Insecticides Board & Registration Committee Sectt.
Directorate of Plant Protection, Quarantine & Storage
Ministry of Agriculture
Government of India
N.H. IV, Faridabad-121 001
Haryana, India
E.Mail:bssphogat@yahoo.co.in

Pesticides have inherent toxicity and also do not differentiate between target and non-target species, thus required to be used judiciously with great care to safeguard the users, animals, wild life and the environment. Like other countries, Indian Parliament enacted an Act, during 1968 called Insecticides Act 1968, to regulate the import, manufacture, sale, transport, distribution and use of pesticides with a view to prevent risk to human beings or animals and for matters connected therewith. As per the provisions of the Act and Rules framed thereunder, compulsory registration of pesticides needed at the Central level and licence for their manufacture and sale etc. are dealt with at the State level. Thus implementation of the provisions of the Act is a joint responsibility of Central, as well as State Governments. The Registration Committee constituted under the Act, evaluates the comprehensive data on various parameters viz., chemistry, bioefficacy, toxicity and packaging and grants registration only after satisfying itself about the safety and efficacy of the product. So far, 181 pesticides belonging to insecticides, fumigants, rodenticides, fungicides, herbicides and plant growth regulators have been registered for use in India. Quality control of pesticides is jointly monitored by State and Central Governments. Government of India also keeps on reviewing registered pesticides for their continued use and/or otherwise by constituting Expert Committees from time-to-time and by this process, 24 pesticides have been banned for use in the country.

PHYSIOLOGY OF DORMANCY-BREAKING MECHANISMS IN RED RICE

Marc Alan Cohn

Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA; mcohn@lsu.edu

During the past 25 years, our work has helped to characterize seed dormancy of grasses, using red rice as a model system. The grains dry-afterripen, the rate and extent of which is dependent upon storage temperature and seed moisture content. Fully imbibed grains buried in flooded soil, or stored submerged in water or at 100% RH, remain dormant and viable for several years at ambient temperatures. Seed sensitivity to dormancy-breaking chemicals (DBC)s increases during soil-burial, suggesting that soil-applied DBCs will be a viable protocol to deplete the seed bank of dormant weed seeds.

Our understanding of the interrelationships between various classes of non-hormonal DBCs has increased tremendously. Carboxylic acids were identified as a new class of DBC, and the activity of aldehydes, esters, and alcohols, among others, was related primarily to their lipophilicities. Differences in bioassay activity curves suggested that most of these chemicals do not directly break dormancy on their own, but serve as ‘pro-drugs’ that are active only after they are metabolized to their corresponding carboxylic acid. Evidence for the pro-drug concept comes from structure-activity studies, tracing metabolites via 13C-NMR, and the use of enzyme inhibitors, particularly 4-methyl pyrazole.

Future studies and those in progress will be devoted to defining the means by which non-hormonal DBCs interact with seed signal transduction pathways to terminate the dormant state and to develop commercial applications.

SOUTHERN AND EAST AFRICAN PERSPECTIVE ON PESTICIDE REGULATION / GLOBAL HARMONIZATION OF PESTICIDE REGISTRATION REQUIREMENTS

J F Louw1, M Rossouw2

1Southern African Weed Science Society, P.O.Box 463, Ballito, KwaZulu-Natal, South Africa; jflouw@mweb.co.za; 2SEARCH Secretariat, P.O. Box 72127, Parkview, South Africa; mrossouw@villacrop.co.za

Pesticide regulation in Southern Africa commenced with the promulgation of the Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act in 1947 (Act 36/1947) which regulated the sales of all pesticides in South Africa. Over the years other countries in Southern Africa e.g. Kenya and Zimbabwe have developed their own registration procedures, while in other countries in the region, no or very little control existed over the import, sale and use of Agricultural remedies. In 1996 representatives from a number of countries in East and Southern Africa met in Lusaka with the purpose of harmonizing the regulatory systems that are used for the approval and registration of agricultural remedies in the Region. This was the birth of the SEARCH (Southern and Eastern African Regulatory Committee on Harmonization of Pesticide Registration) initiative. Initially 12 countries were involved with SEARCH. A harmonized application form as well as harmonized active ingredient and formulated product dossiers requirements and guidelines were compiled. These harmonized forms, dossiers, requirements and guidelines were accepted in principle by all 12 countries during the SEARCH 2001 meeting in Malawi. Currently the countries involved with the SEARCH initiative are: Angola, Botswana, Ethiopia, Kenya, Madagascar, Mauritius, Mozambique, Malawi, Namibia, South Africa, Tanzania, Uganda, Zambia and Zimbabwe.

The ultimate goal is regional co-operation on issues around the regulated responsible use of and trade in pesticides, which involves a harmonized regulatory system, harmonized protocols, harmonized labels and harmonized bio-pesticide regulations.

SOME PHYSIOLOGICAL AND COMPETITIVE ADVANTAGES OF RED RICE OVER RICE

N R Burgos1, P A Counce2, D R Gealy3, R J Norman4, V K Shivrain5, and E N Stiers6

1CSES, University of Arkansas, 1366 W. Altheimer Drive, Fayetteville, USA 72704; nburgos@uark.edu; 2Rice Research and Extension Center, Stuttgart, AR, USA; 3Texas A&M University, College Station, TX, USA; 4Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695; 5Department of Crop and Soil Sciences, Rutgers University, New Brunswick, NJ 08854; 6Dale Bumpers National Rice Research Center, USDA-ARS, Stuttgart, AR, USA.

In the southern U.S. and other rice-producing countries, red rice (Oryza sativa) is a troublesome weed in rice production. Red rice is highly competitive, reduces harvesting efficiency, and contaminates harvested grain with red kernels. Red rice problem spurs the herbicide-resistant rice (Clearfield®, Liberty Link®) technology. To improve management strategies for red rice, we need to know crucial biological and physiological differences between it and cultivated rice. Experiments were conducted at Stuttgart and Fayetteville, AR, USA between 1999 and 2003 to gain more understanding of the biology and physiology of red rice. For a self-pollinated plant, red rice has extraordinary phenotypic diversity. In Arkansas (rice area ~ 0.6 million ha), two major types of red rice exist – strawhull and blackhull. Strawhull types are 84 to 180 cm tall, produce 24 to 193 tillers, and flower at 11 to 19 weeks after planting (WAP). Blackhull types are 76 to 196 cm tall, produce 12 to 194 tillers, and flower at 11 to 18 WAP. Some biotypes are as short as cultivated rice. Canopy structure differed. Red rice photosynthesized at a higher rate and adapted to shade better than rice. Carbon isotope discrimination analysis did not indicate that red rice evolved an intermediate C4 pathway. In non-competitive conditions, red rice produced more tillers and biomass than rice. Seedling red rice had more root growth than rice 21 d after seeding. In competitive conditions, red rice responds more to nitrogen and takes up more nitrogen than rice.
HYBRIDIZATION BETWEEN RED RICE AND RICE IN THE U.S.: IMPLICATIONS FOR GENE FLOW AND FERALITY

D R Gealy1 and L E Estorninos Jr2
1USDA-ARS, DB NRRC, Stuttgart, AR, dgealy@ars.usda.gov; 2University of Arkansas, Fayetteville, lestorn@uarl.edu

Imidazolinone-resistant rice cultivars have been increasingly adopted in the southern U.S. since their initial introduction in 2002, largely due to the improved control of red rice in these systems. Although promising, herbicide-resistance technology has raised concerns about potential hybridization and gene flow between rice (Oryza sativa L.) and its weedy relative, red rice (Oryza sativa L.), and the potential development of herbicide-resistant or feral red rice populations. SSR marker analysis and phenotypic analysis of segregating populations are being employed in Arkansas to quantify, identify, and track red rice hybrids in grower and research fields. Outcrossing rates between red rice and herbicide-resistant or non-resistance rice have been variable, but nearly always less than 0.5%. Outcrossing depends on a number of factors, including red rice ecotype, rice cultivar, vertical and/or horizontal distances between panicles, synchronization of flowering periods, and seed production, as well as environment. Subsequent introgression of hybrid traits into the red rice population can be mitigated by additional factors including delayed flowering periods and/or low seed set in hybrids. Although gene flow between rice and red rice in U.S. rice fields is likely to remain a significant issue, establishment of feral populations of hybrid, weedy rice in non-rice or non-agricultural areas appears to be of nearly always less than 0.5%. Outcrossing depends on a number of factors, including red rice ecotype, rice cultivar, vertical and/or horizontal distances between panicles, synchronization of flowering periods, and seed production, as well as environment. Subsequent introgression of hybrid traits into the red rice population can be mitigated by additional factors including delayed flowering periods and/or low seed set in hybrids. Although gene flow between rice and red rice in U.S. rice fields is likely to remain a significant issue, establishment of feral populations of hybrid, weedy rice in non-rice or non-agricultural areas appears to be of relatively low risk due to the minimal availability of desirable O. sativa habitat outside of rice fields. Integrated strategies that address short- and long-term challenges of red rice control and resistance management will be necessary to optimize sustainability of rice production in the U.S.

HERBICIDE SENSITIVITY OF ECHINOCHLOA ACCESSIONS IN ITALIAN RICE FIELDS

A Ferrero and F Vidotto
Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio. University of Turin. Via Leonardo Da Vinci, 44 10095 GRUGLIASCO (TO) - ITALY, aldo.ferrero@unito.it, francesco.vidotto@unito.it

Echinochloa species are the main weeds infesting Italian rice fields. These plants show a great variability in morphological traits, such as size, panicle and spikelet characteristics, tillering ability and germination behavior, which often results in difficult and uncertain identification at the field level. Recent surveys indicated the presence in Italy of Echinochloa populations with different sensitivity to herbicides. In the present study, the variability of sensitivity to several rice herbicides has been investigated in eighty accessions that were identified and morphologically characterized in a large survey carried out in the Italian rice area. Efficacy of several herbicides was tested on seedlings grown in pots in greenhouse conditions. Seedlings were sprayed at the 3-4 leaf stage at four rates (0, 0.5x, 1x, and 2x recommended field rate) of azimsulfuron, bensulfuron-methyl, bispyribac-sodium, cyhalofop-butyl, molinate, propanil or quinclorac. Fresh weight reduction was determined at 7 or 15 days after spraying, depending on the herbicide applied. Sensitivity to the herbicides varied among the accessions. Fresh weight was reduced more by bispyribac-sodium (50%), in 17 (azimsulfuron, 1x), 7 (azimsulfuron, 0.5x), 1 (azimsulfuron, 0.5x), 9 (bispyribac-sodium), 48 (cyhalofop-butyl), 3 (molinate), 29 (propanil), and 25 (quinclorac) accessions sprayed at the field rate. Increasing the herbicide dosage generally reduced the variability of response among accessions. Several low-sensitive accessions were found, in particular for azimsulfuron, bispyribac-sodium, cyhalofop-butyl, molinate, and propanil. These results relate to the wide variability found in morphological traits of Echinochloa plants. Knowledge of the actual composition of the Echinochloa populations present in a field is crucial for successful management of these weeds.

ROLE OF CONSERVATION TILLAGE AND CHEMICAL/NUTRIENT MANAGEMENT PRACTICES IN REDUCING WATER POLLUTION AND HYPOXIA IN THE GULF OF MEXICO AND BLACK SEA

Rameshwar S. Kanwar1, David Nakani2 and Valentine Alexandrescu3
1Professor and Chair, Agricultural & Biosystems Engineering Department, Iowa State University, Ames, Iowa 50011, USA, e-mail: rkanwar@iastate.edu
2** Head, Environmental Component of the World Bank APC Project, Tbilisi, Georgia
3*** Project Director, World Bank APC Project Management Unit, Calarasi, Romania

The concept of conservation tillage systems was developed in the United States in the 1950’s, but was not widely used and accepted until 1980’s. This practice has helped replacing conventional plowing in many areas of the United States to reduce soil erosion. Conservation tillage has not been yet promoted on a large scale in Africa, Asia, Eastern Europe, and the Newly Independent States. Several conservation tillage systems (namely no-till, ridge till, and chisel plow) are currently being used to reduce soil erosion, but these systems may require better chemical management practices to reduce the potential on water pollution. Agricultural production systems (namely no-till, ridge till, and chisel plow) are currently being used to reduce soil erosion, but these systems may require better chemical management practices to reduce the potential on water pollution. Agricultural production systems in the USA, Europe, and the Newly Independent States have been significantly in recent years and the public is concerned about the impacts of these systems on surface and groundwater quality. Because of these concerns, a study (1990-1998) was conducted to develop chemical management practices with the goals of reducing input costs and protecting water quality. This study concluded that conservation tillage systems increase infiltration, organic matter, microbial activity, and could be effective BMPs for controlling groundwater pollution. In addition, the World Bank has initiated several projects to reduce the transport of nutrients from nonpoint sources to the Black Sea. The objective of this paper is to present the evaluations of Iowa studies on conservation tillage and two case studies from Romania and Georgia where the World Bank is helping in the implementation of BMP’s in reducing nutrient loadings to Black Sea and assessing the overall impacts on hypoxia.

RECONCILING AGRICULTURAL PRODUCTIVITY AND BIODIVERSITY

Annik Dollacker
Bayer CropScience, Head Public Affairs, Alfred-Nobel-Str. 50 D-40789 Mönheim

Improving agriculture productivity in a sustainable way is inextricably linked to Sustainable Development. Integrated technologies and management practices that conserve land, water and living resources are a solution to address the matter. Bayer CropScience in cooperation with other stakeholders undertake run a number of pilot programmes focused on promoting good agricultural practices that simultaneously improve agricultural productivity and biodiversity conservation. In Guatemala, Bayer CropScience has been working in partnership with the “Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ)” and local stakeholders. Through the provision of adapted participatory training activities farmers are informed on how to better protect soil and water resources, conserve biodiversity and optimize pest management to enhance agricultural productivity. Improving agriculture productivity in a sustainable way is inextricably linked to Sustainable Development. Integrated technologies and management practices that conserve land, water and living resources are a solution to address the matter. Bayer CropScience in cooperation with other stakeholders undertake run a number of pilot programmes focused on promoting good agricultural practices that simultaneously improve agricultural productivity and biodiversity conservation. In Guatemala, Bayer CropScience has been working in partnership with the “Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ)” and local stakeholders. Through the provision of adapted participatory training activities farmers are informed on how to better protect soil and water resources, conserve biodiversity and optimize pest management to enhance agricultural productivity. In Brazil Bayer CropScience initiated a pilot programme with a citrus farm and Sao Paulo University. This partnership employed a replantation strategy for native plants alongside a water source on the farm. The initiative offers a valuable means to raising awareness for the need to integrate agricultural production and biodiversity conservation to ensure an economically viable production base.

Enhancing water sources protection and achieving richer biodiversity on farmland is also a key focus of Bayer CropScience UK’s Biodiversity Project. The project, conducted at the company’s field stations, aims to enhance on-farm plant and wildlife biodiversity and demonstrate how farmers can benefit from this. Habitat creation and restoration is an integral element, for example through the establishment of uncultivated field margins, conservation headlands or new hedgerows.
Invasive plants impede rangeland function by disrupting ecosystem processes. Managing invasive plants requires manipulating disturbance regimes that favor desirable species and wanted changes in successional trajectories. Reasons for the arrival, establishment, and spread of invasive plants should be understood before effective rangeland restoration strategies are developed. Removing an invasive plant species without attention to plant community dynamics often only opens niches for other undesirable species to occupy. Restoration of desirable plant communities that resist invasion is an appropriate goal for rangeland restoration programs. The integrated weed management paradigm provides a context for managing invasive plants that focuses on ecosystem processes and not on particular plant species or control practices. Prevention, detection, and control are key components of integrated management strategies. The suitability of weed control tools (biological, chemical, cultural, and mechanical) will vary according to the invasive plant and invaded site characteristics. The merits of each control measure and the potential for complementary or synergistic interactions when applying measures in appropriate sequences and combinations should be considered when developing rangeland restoration programs. Herbicides can serve as catalysts to expedite vegetation change, and thus lead to development of desired plant communities. The variety of selective herbicides and precision application technologies currently available provide land managers with many options. Used in concert with other plant control measures, herbicides can alter plant composition, manage plant community succession, and accelerate rangeland restoration.

S22MT26P04
THE EFFECT OF WATER REGIME AND SOIL MANAGEMENT ON METHANE (CH₄) EMISSION FROM RICE FIELD

(1)Prihasto Setyanto, (2)Harris Burhan, (3)Suharsih, and (4)Orbanus Naharia

(1)Research Station for Agricultural Environment Preservation, Jl. Jakenan-Jaken km 05 Pati 59182 Jawa Tengah, Indonesia
(2)Syngenta Research and Development Station PO Box 08, Cikampek, Karawang, Indonesia
Post Graduate School, Bogor Agricultural University, Darmaga, Bogor, Indonesia

Collaborative field studies between Syngenta Research and Development Station, Cikampek and Agricultural Environment Preservation Research Station, Jakenan, was conducted to investigate the effects of water regime and soil tillage on CH₄ emission during wet and dry season crop. The treatments consisted of two factors; water regimes (A) and soil management (T). The water management regimes were; A1 – continuously flooded 5 cm, A2 - intermittent irrigation, A3 - saturated water condition at 0-1 cm water level. The soil management factors were; T1 - normal tillage, T2 - zero tillage + 0.4 kg a.i. paraquat ha⁻¹, T3 - zero tillage + 0.6 kg a.i. paraquat ha⁻¹. Methane gas samples were collected using a manually operated 40 x 40 x 100 cm plexi-glass chamber and the CH₄ concentration was measured using gas chromatograph equipped with a flame ionization detector. The CH₄ reductions ranged from 42% (A3T1) to 85% (A3T2) in wet season. In the dry season, reductions in CH₄ emissions ranged between 15% to 92%. The rice grain yield reductions ranged from 9% (A2T1) to 31% (A3T2). The best CH₄ gas mitigation option in terms of benefit gain and CH₄ reduction was the zero tillage, continuously flooded water regime plus application of 0.4 kg a.i. paraquat ha⁻¹ (A1T2). In the wet season crop, the cost benefit with A1T2 was Rp. 281,800 per hectare and a reduction of 62.5% from the CH₄ emissions. In the dry season, the best CH₄ gas mitigation option was the saturated water regime with normal tillage (A3T1), which gave a benefit of Rp. 270,000 and reduced CH₄ emissions by 16.4%.

Key words: water management, soil management, methane emission, rice
S24MT26P02

IMPACT DIFFERENT TILLAGE PRACTICES HAVE ON CROP YIELD, PRODUCTION COST, PROFIT AND SOIL QUALITY IN A CORN/SOYBEAN ROTATION

B.A. Alesi\(^1\) R.A. BUMAN\(^2\)

\(^1\)Monsanto Company, Cordillera, 106 Pebble creek, Boerne, Texas, U.S.A. 78006, bruno.a.alesi@monsanto.com; \(^2\)Agren Inc., 1238 Heires Ave., Carroll, Iowa, U.S.A. 51401, bobi@agren-inc.com

The adoption of conservation tillage practices such as no-tillage is a growing trend in today’s production agriculture. Farmers across the world are adopting no-tillage for the positive impact it has on improving soil quality. While past tillage research confirmed the agronomic benefits farmers have experienced with regard to soil quality improvement and crop yield, this research shed light on the impact tillage has on production cost and farmers profitability. In 1997, Monsanto Company initiated the Centers of Excellence (COE) project with the objectives and goals of evaluating various tillage systems and the impact they had on a variety of agronomic and economic factors involved with the production of a corn/soybean rotation. The Centers of Excellence project involved the use of on-farm large-scale side-by-side tillage field trials conducted at 13 COE sites across the corn/soybean belt of the United States from 1998 through 2002. Each COE site compared strip-tillage, no-tillage and conventional tillage corn systems as well as no-tillage and conventional soybean systems. Results over the five-year period showed no significant differences in crop emergence or yields among the different tillage system for both corn and soybeans. The no-tillage corn and soybean systems were found to have lower production cost and greater profits for the 5-year period. The higher profit realized with the no-tillage systems point to the need for farmers and advisors to carefully consider profit rather than yield when making decisions regarding which tillage practices.

S24MT26P03

UNDISTURBED TRASH BLANKETING IN RATOONS AS A KEY COMPONENT OF SOIL CONSERVATION AND INTEGRATED WEED MANAGEMENT IN SUGARCANE

J.C. Díaz, R. Zuaznábar, E. Velarde, R. Córdoba, E. Cruz and L. González

\(^1\)National Sugarcane Research Institute (INICA), Carr. Central Martínez Prieto km 2½, Boyeros, Havana, C.P. 19390, Cuba, e-mail: jodiaz@inica.edu.cu

The preservation of ratoon crop residues was assessed in field surveys in two sugarcane estates with heavy weed infestations. Furthermore, two fertilizer placement replicated trials were conducted under undisturbed trash blanket conditions. Results showed marked reductions in weed infestations and increases in cane yields, as well as economy of herbicides, labor and other inputs with generalization of trash blanketing. Incorporated center-stool fertilizer placement showed increase in follic lar nitrogen leaf content. The practice of trash blanketing in well-drained ratoon sugarcane has demonstrated a valuable soil conservation practice (preserving soil moisture and preventing erosion) and a key component of integrated weed management.

S24MT26P04

CONSERVATION OF NATURAL RESOURCES IN BRAZILIAN AGRICULTURE: THE ROLE OF TECHNOLOGY

P J CHRISTOFOFFOLETI

University of São Paulo – ESALQ/USP – Brazil – pjchrist@esalq.usp.br

Preserving and enhancing the resource base on which Brazilian agriculture depends is a key national priority, as is protecting the environment that in much of Brazil is mainly influenced by agricultural practices. Tremendous success has been achieved in enhancing soil quality and preventing soil erosion through the widespread adoption of no-till soybeans. This practice has been made possible an expansion of soybean production in Brazil. Among the more important approaches has been the development of effective combinations of burndown and short residual herbicides to enable farmers to perform weed control and planting operations in close sequence. By using short residual herbicides in combination with burndown compounds, farmers can control the weeds more effectively and also have more flexibility to plant the soybeans. Another key opportunity for Brazilian agriculture is the adoption of "green cane" harvest in Sugarcane. Brazil is the largest global producer and to pursue desired air quality improvements, the government has mandated a phase-out of largest global producer and to pursue desired air quality improvements, the government has mandated a phase-out of burning as a harvest aid operation for sugarcane. Green cane harvesting provides a variety of benefits, including weed suppression, moisture conservation, enhanced soil surface organic matter and reduction in soil erosion. With increased adoption of this technology, the weed dynamics and control program have been changed. Achieving the natural resource benefits of "green cane" harvesting will not be possible without continuing development of new crop protection technologies. Therefore, herbicides that pass through the residue blanket can be applied at the beginning of the growing season and will continually provide control of problematic weeds.

S24MT26P05

SOME ASPECTS OF CONSERVATION AGRICULTURE IN CENTRAL AND SOUTHERN AFRICA

J B R Findlay

Agricultural Resource Consultants, P.O. Box 3474, Parklands, 2121 South Africa. E-mail agrecon@pixie.co.za

Large-scale commercial agriculture in South Africa, Kenya, Tanzania and Zimbabwe has adopted many principals of conservation agriculture. This has been based on various aspects such as production cost reduction (fuel and labour), erosion control in sugarcane planted on slopes (legislation), efficiency and time saving (cereal and row crop plantings), improved soil structure and texture (stable yields), organic matter retention and better moisture utilisation (rainfall and irrigation). The adoption of basic technologies such as the use of certified seed, soil analyses combined with correct fertilization levels, crop rotations, the adoption of proven pest management systems and, more recently, the introduction of genetically modified crops have made significant contributions.

The challenge in Africa is for the many smallholder farmers to have access to these technologies to enable them to produce stable yields for sustainable food security. The challenge is to produce a surplus for wealth creation, to improve their quality of life and to improve the environment. There are many organisations such as the African Conservation Tillage Network, GTZ, FAO, Monsanto, Saskakawa Global 2000, Technoserve, Land Care as well as organised agriculture that are successfully promoting conservation agriculture within these previously neglected communities.

The adoption of conservation agriculture in Africa by smallholders is a reality. Some examples are maize production in Ethiopia, Ghana, Kenya, Malawi, Mozambique, South Africa and Zambia; rice production in Mozambique and Nigeria; cereals in Ethiopia and Kenya and teff in Ethiopia.

In most African countries previous and existing agricultural policies have failed. A change is essential and conservation agriculture principals will provide many solutions.
Crop production in the Western and Southern Cape wheat producing areas of South Africa is hampered by generally shallow and stony soils, characterized by a weakly-structured A-horizon and low organic C content. Although both areas can be described as winter-rainfall-areas with long term annual means of 275 to 500 mm, climate in the Western Cape is typically Mediterranean with hot, dry summers and mild, rainy winters. In the Southern Cape the percentage of rainfall during the winter gradually decreases from about 80% in the west to 55% in the extreme east. Traditional production systems in these areas include following and mouldboard/disc ploughing. Research on minimum and no-tillage in these areas started in 1976. Results showed little advantage due to minimum and no-tillage with regard to soil moisture in these areas, but improved soil fertility and workability due to increased soil organic material enhanced yields and help to reduce input costs. For this reason present research focuses on the development of sustainable-crop rotations and improved N-fertilization programs. Although the adoption of minimum and no-till agriculture is gaining momentum during recent years, the rapid development of herbicide resistant weeds in these areas, may have serious implications for the in future sustainability of these tillage systems. The development and implementation of management strategies to ensure efficient weed control in minimum and no-till systems are thus of the utmost importance.

Pyrazosulfuron ethyl (Ethyl 5-[(4,6-dimethoxy-pyrimidin-2-yl)carbamoylsulfamoyl]-1-methylpyrazole-4-carboxylate), a newly introduced rice herbicide in India, belongs to sulfonurea group, used to control a wide range of broad-leaved weeds in transplanted paddy fields. The main aim of the study was to determine the persistence behaviour of pyrazosulfuron ethyl in soil, water, straw, grain and husk in transplanted paddy under tropical climate of West Bengal (India). A field trial was conducted at University Research Farm during 2003 in transplanted paddy with Pyrazosulfuron ethyl 10 WP @ 20 and 40 g a.i. ha⁻¹. Periodically water and soil samples were collected and analyzed along with straw, grain and husk samples at harvest. The analytical methodology for estimation of pyrazosulfuron ethyl in soil/straw/grain/husk was extraction with acetone/ether+water (80:20) followed by partition with dichloromethane. Water samples were extracted with dichloromethane followed by evaporation. Afterwards all the samples reconstituted in acetone/tile and analyzed by HPLC with UV/VIS detector (RP C-18 column) at λmax 230nm, using water (0.08% phosphoric acid) + acetone (1:1) as mobile phase. The average half-life (DT₅₀) values in soil and field water were calculated using simple first order kinetics and found to be 7.53 and 2.6 days respectively. The dissipation pattern was a steady curvilinear decline. No residues could be detected in straw, grain and husk samples at harvest irrespective of doses. This study clearly revealed that pyrazosulfuron ethyl does not create any residual problem in the eco-system under tropical climate.
ENVIRONMENT POLLUTION STUDY OF ATRAZINE WITH SURFACANTS IN THE INCEPTISOLS OF INDIA

R. K. Ghosh1, A. Moitra2, A. K. Mukharjee3 and P. K. Sarkar4

Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur-741252, Nadia, West Bengal, India
e-mail - rkgbcvk@yahoo.com

The Queen of Cereals, Maize (Zea mays L.) grown in the Inceptisols of India is facing a yield loss of 39.8% due to weeds. Field experiments were conducted at the University Farm during 2001-03 to study the bio-eficacy, phytotoxicity and environmental pollution effects of Atrazine with surfactants. Besides unweeded control (WC) and hand weeding (HW) Atrazine was applied @ 2 kg ha-1 alone and with 4 surfactants @ 220 ml ha-1. Observations were taken on numbers, dry weights and chlorophyll content of weed flora, phytotoxicity on maize, available nutrients and population of beneficial aerobic non-symbiotic N-fixing and P-solubilising bacteria.

The predominant weed-flora found in the experimental plots was Digitaria sanguinalis, Echinochloa colona, Cyperus rotundus, and P-solubilising bacteria. It can, therefore, be concluded that POE Atrazine + surfactant did not cause any environment pollution and can be a substitute for the costly traditional method of HW for weed management in maize in Inceptisols of India.

SOIL PERSISTENCE AND VEGETABLE RESPONSE TO HALOSULFURON IN BARE-SOIL VERSES POLYETHYLENE MULCH CONDITIONS

Timothy L. Grey1, A. Stanley Culpepper2 and Theodore M. Webster3

1The University of Georgia, Tifton, Georgia, 31793-0748, tgrey@tifton.uga.edu, stanley@arches.uga.edu; 2USDA-ARS, Tifton, Georgia, 31793-0748, twesbter@tifton.uga.edu

Halosulfuron has been proposed as an alternative for nutsedge (Cyperus species) management in many vegetable crops due to the elimination of methyl-bromide. Crop tolerance is often the factor limiting its adoption. Different environmental conditions exist under polyethylene mulch, especially temperature and moisture regimes, which affect herbicide dissipation. Thus, herbicides applied to bare-soil (BS) verses under polyethylene mulch (PM) situations could vary with respect to activity and dissipation. Therefore, a series of studies were established to 1) determine the effect of PM and BS application on halosulfuron dissipation; 2) evaluate transplanted cucumber halosulfuron tolerance applied post-emergence and through drip tape irrigation (DRIP) and transplanted eggplant tolerance when DRIP applied; 3) and evaluate strawberry, collards, and seeded mustard tolerance to halosulfuron applied pre-emergence (PRE) to BS and under PM. Initial halosulfuron concentration was 18.6 and 17.7 ug/kg for the BS and PM, respectively. Twenty four hours after treatment, halosulfuron dissipation was different for the two systems and this continued for the length of the trial. Data indicated that PM decreased the rate of dissipation of halosulfuron resumes BS. Vegetable injury and response varied by treatment, planting date, and species. Data indicated that halosulfuron may have a potential use in cucumber and eggplant when applied through drip tape irrigation and for strawberry, collards, and seeded mustard when PRE applied to BS or under PM. This is significant because many growers plant sequential crops on the same polyethylene bed. Additional research on halosulfuron application under PM, to BS, and through DRIP is needed.

BIO-EFFICACY OF SOME ECO-FRIENDLY HERBICIDES IN TRANSPLANTED SUMMER RICE (Oryza sativa L.) AND THEIR EFFECT ON BENEFICIAL SOIL MICROORGANISMS

Subrata Kr. Ghosh1, R. K. Ghosh2, Pritam Ghosh3 and Sankar Saha4

Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya
Nadia-741 252, West Bengal, India
Email - pritambcvk@yahoo.com

Annually 15 million tonnes of rice is reported to be lost due to weeds in India. Accordingly, efficient, economic and time saving weed control practices should be programmed. Reliance on a few herbicides for controlling weeds in a particular crop year after year may lead to multiplication and spread of resistant weeds. The field experiment was conducted during summer season of 2002-2003 at Viswavidyalaya Farm. The treatments comprised six different doses of IR 5790 10EC (75,100,125,175 and 200 g ha-1), Pretilachlor 30 EC at 500 g ha-1, Butachlor 50 EC at 1250 g ha-1, Oxadiazifluth 80WP at 100 g ha-1, and unweeded control. The soil samples for colony-count of NSNF and PSB bacteria were collected from the rhizosphere of the crop at 2, 45 and 60 DAA of herbicides.

Pretilachlor at 500 g ha-1 recorded the lowest density and dry weight of weeds closely followed by IR 5790 applied at 200 g ha-1. Regarding grain yield, IR5790 at 200g ha-1 recorded the maximum of 6.28 tha-1 which was closely followed by IR 5790 at175 g ha-1 (6.22 tha-1), which were 33.1 and 31.8 % percent higher respectively than that of unweeded control. None of these herbicides tested in the experiment was found to be toxic to the crop. It was also found that all the tested herbicides reduced the population of NSNF and PSB bacteria at 2 DAA of the chemical. It can be concluded that IR 5790, a new herbicide molecule can be used as eco-safely weed management in transplanted rice.

EVAlUATING OF MODEL FOR PREDICTING HERBICIDE LEACHING IN TROPICAL SOILS

C.A. Spadotto1, M.B. Matallo2, L.C. Luchini2, M.A.F. Gomes3

1Embrapa Environment, Rod. SP 340 - km 127.5, - C.P. 69, CEP: 13820-000 – Jaguariúna (SP), Brasil.
spadotto@cpma.embrapa.br; 2lnstituto Biológico, Rod. Heitor Penteado km 3,5 – C.P. 70, CEP: 13001-970 – Campinas (SP), Brasil.

Diuron and tebu fluoruron have been used in sugarcane crops in Brazil for many years, even on re-charge areas of an important aguier. It was carried out to evaluate how well a simple model output approximates measures amounts of leaching of these herbicides in a clayeys and a sandy tropical soils (respectively, a Typic Quartzipsamment and a Typic Haplorthox, according to the U.S. Soil Taxonomy), using undisturbed soil columns (small lisimeters). Attenuation Factor (AF) is a model based on fraction of applied amount that is likely to leach past a specified soil depth. It calculates rates of leaching and degradation, and assumes steady water flow. Therefore, soil sorption and degradation were also studied in laboratory work. Sorption was well represented by linear and Freundlich equations. Simple exponential equation was not able to represent degradation, thus a bi-exponential equation was used, and some model adjusting was needed. Average measured amounts of each herbicide were compared with amounts predicted by the multi-layered-soil AF model. The model was able to predict leaching amounts in the sandy soil, especially for diuron, however the model performance was not good in the clayey soil. Differences can be due to the model conceptual framework, assumptions and limitations, as well as to the input data set used. It is well known that differences can also be due to analytical limitations. It is noteworthy that dispersion, in addition to convection/advection, can be especially relevant in soil lysimeter scale, and preferential flow can be particularly important in highly structured Oxisols.
Cotton yield was severely affected by doses as low as 6.7 g e.a. at a drift level of 1 L ha⁻¹. The range of doses was based on the assumption of a different growth stages, as a simulation of eventual drifts to these crops. The primary goal of this study was to determine the leaching characteristics of the two herbicides namely tebuthiuron and azafenidin in three South African soils. In addition existing computer based - mathematical models (developed mainly in Europe) were evaluated for their effectiveness in predicting leaching and persistence of these two compounds under South African conditions. Field-leaching experiments were conducted on three different soil types in the Pretoria (Gauteng Province) area. At each site three replicate 150m² plots were used for each herbicide. The herbicides were applied to bare soil. Soil was sampled at 5 different intervals up to 120 cm below ground level and analysed for pesticide. Residue analyses were performed at day 0 (reference concentration), day 5, day 11, day 22, day 88 and 120 days after application. Soil adsorption coefficient determinations performed concurrently indicated that soil depth did not alter the adsorption of tebuthiuron and azafenidin. Leaching patterns were similar for both compounds, except that azafenidin was retained in higher levels in the upper soil layers.

Hormonal-type herbicides such as 2,4-D are used to control many broomleaf weeds in Brazil, specially at burndown prior to summer crops. Drift of these herbicides may cause severe injuries on sensitive crops. Field experiments were carried out for two consecutive years in tomato and grapes, by applying sublethal doses of 2,4-D (range from 0.42 to 107.20 g e.a. ha⁻¹) directly to plants at different stages of growth, as a simulation of eventual drifts to these crops. The range of doses was based on the assumption of a 0.125 to 4% drift level of a 1 L ha⁻¹ of commercial formulations. Cotton yield was severely affected by doses as low as 6.72 g e.a. ha⁻¹ at crop flowering, but the tolerance increases as plants get older. The most harmful effect of 2,4-D for cotton is the flower and floral buds drop. Tobacco was able to tolerate up to the highest doses without showing any visual or yield injury. No meaningful visual symptom was observed for tobacco plants sprayed after transplantation to field. Some of the problems claimed as 2,4-D drift may be related to growth regulator application after topping. None of the applied doses impacted negatively tobacco yield or quality. For all combinations of stages, crops and doses, symptoms of plant toxicity may range from no visual/economic injury to death. Lab residue analysis provided data to support that 2,4-D persistence in plants is short. Even when the herbicide was applied close to crop yield, residue levels were always lower than 50 ppb.

The field experiment was conducted at 'C' Block Farm, Kalyani,Nadia, West Bengal, India during summer 2002 to study the "Bio-efficacy and phytotoxicity of new generation herbicides and their effect on soil chemical and biological environment in transplanted summer rice (Oryza sativa L.). The experiment was laid out in Randomized Block Design with nine treatments replicated thrice . Besides unveeded control, hand weeding at 20 and 40 days after transplanting, four doses of Pyrazosulfuron-ethyl 10 WP (20,25,50 and 100 g ha⁻¹) and three doses of Acetachlor (100,150 and 200 ml ha⁻¹) were used as pre-emergence spray. The predominant weed species were Echinochloa crus-galli,Leersia hexandra,Cyperus iria, Cyperus difformis, Marselia quadrifolia, Enhydra fluctuans and Eclipta alba. The herbicides did not show any toxicity symptom on rice plant. Amongst the chemicals Pyrazosulfuron-ethyl proved better than Acetachlor. Higher doses of Pyrazosulfuron-ethyl controlled weeds more effectively than lower doses. Lowest weed chlorophyll content was recorded where Pyrazosulfuron-ethyl was applied at 100 g ha⁻¹. It was revealed that Pyrazosulfuron-ethyl proved stimulatory for both non-nonsymbiotic N- fixing and P- solubilizing microorganisms whereas Acetachlor showed no response. Soil micronutrients did not follow any definite pattern of change with crop growth. The Fe and Cu availability increased but Mn and Zn availability decreased may be because root exudates of both weed flora and rice plant making rhizosphere acidic. Thus it can be concluded that pre-emergence application of Pyrazosulfuron-ethyl is more effective in increasing the rice yield by controlling the weeds, favouring the beneficial soil microorganisms and by increasing availability of micronutrients.
S24MT5P00

INFLUENCE OF FOURTH YEARS OF SIMAZINE APPLICATION ON PLATS COVER AND SOIL MICROORGANISMS

Henryka Rola¹, Jozef Rola², Mariusz Kucharski¹, Andrzej Nowak³, Krystyna Przybulewska⁴, Krzysztof Domaradzki¹, Agnieszka Majchrzak⁵

¹Department of Ecology and Weed control, Institute of Soil Science and Plant Cultivation of Wroclaw, Poland
²e-mail: sekretariat@isunwr.neostrada.pl
³Department of Microbiology, Academy of Agriculture of Szczecin, Poland
⁴e-mail: snowak@agro.ar.szccecin.pl

In Poland, fourth years ago the specific field trials were initiated. On the same plots, every year, in spring, for 40 years, the simazine herbicides was applied in increase doses – 5 and 10 kg of simazine per ha.

The aim of investigation was evaluation of influence of fourth years simazine application on plants cover and soil microorganisms.

On those plots, at first (1963) occurred 27 weed species. From this group of weeds , under influence of long term application of simazine, the following weed species were resistant: Elymus repens, Lolium perenne, Amaranthus retrofexus, Elytren canadensis, Geranium pusillum, Digitaria sanquinails, Achillea millefolium, Artemisia vulgaris, Convolulvs arvensis, Equisetum arvenese.

Long term application of simazine did not cause of residue accumulation in soil profile. The residues were situated mainly up to the depth of 40 cm. Concentration of simazine residues, in this soil layer amount to 0.05-0.25 mg*kg⁻¹. In the layer between 60 to 100 cm the amount of residues did not exceed 10⁻³ mg*kg⁻¹.

In different soil layers changes in microorganisms counts were observed. After 40 years simazine application, in surface layer (0-10 cm) the amount of residues did not exceed 0.08-0.25 % of applied. In the layer between 60 to 100 cm the amount of residues did not exceed 10⁻³ % of applied.

The results suggested, that autumn application does give the potential to contaminate ground water by leaching of herbicides.

S24MT5P00

SIMULATION OF ¹⁴C-ATRAZINE LEACHING IN LYSIMETER STUDIES WITH PELMO AND MACRO_DB

A A Smetnik

Russian Institute of Phytopathology, General Tyulenev Str. 3-158, Moscow 117465, Russian Federation, smetnik@online.ru

The Pesticide Leaching Model (PELMO 3.00) is used by German authorities for registration purposes. MACRO_DB is a decision-support tool for predicting pesticide fate and mobility in soils, which consists of soil, pesticide, climate and crop databases linked to parameter estimation routines and the simulation model MACRO and is used by Swedish authorities.

The objective of the investigation was to evaluate these models using a leaching experiment conducted in field lysimeters. ¹⁴C-atrazine (1 kg/ha) was applied to lysimeters containing undisturbed soil cores of loamy sand. Before the herbicide application 3 lysimeters were treated with sewage sludge at rates of 0.5, 5 and 20 t/ha. After herbicide application corn was sown. Over a period of 11 months the leaching water was collected. The amount of leached radioactivity was measured. At the end of the experiment the distribution of the compound in the soil was determined.

¹⁴C-atrazine leaching did not correlate with the sewage sludge application rates. On totals (volume of the leached water, atrazine content in the leachate and in the soil profile) both models have given a quite good prediction (after their calibration). However, a detailed study of herbicide transport over time and depth in lysimeters shows essential differences between modelled and observed values. The results of MACRO_DB simulations are better than the PELMO output data because it considers pesticide preferential flow. Preferential processes must be taken into account for sandy soils as well as for structured soils. The use of mathematical models of herbicide leaching with their calibration on lysimeter data can reduce the serious errors.

S24MT11P00

WINNING, LOSING AND HOLDING OUR OWN WITH INVASIVES IN WISCONSIN, USA

Jerry Doll

University of Wisconsin Department of Agronomy, 1575 Linden Dr., Madison, WI 53706, jddoll@wisc.edu

The current Wisconsin Noxious Weed Law never functioned well because it lacked a mechanism for adding and deleting species, did not attempt to educate or train, only focused on agricultural settings, and lacked financial support. In 1999, we began reinventing a functional noxious weed program to replace our defunct law. We have a document ready for introduction into the legislative process. The new law will 1) allow for annual modifications, 2) establish prohibited, restricted and watch categories at the state and county levels, 3) create a Noxious Weed Board, 4) include education and research as significant components, 5) provide funding to subsidize the costs of combating prohibited species, and 6) assign responsibilities within government agencies regarding implementation and execution of the law. At the moment the state fiscal crisis had stopped all progress and the new program is dormant. Nevertheless, the efforts to organize, educate, monitor and manage invasive species are anything but dormant. We formed the Invasive Plants Association of Wisconsin (IPAW) which has convened biennial conferences on invasives, we are starting to systematically document the location of invasive plants, and we are providing education on invasives via the IPAW web site, conferences, printed word, and field demonstrations. Federal monies are subsidizing the control of Rosa multiflora. The state Departments of Transportation and of Natural Resources are cooperating to control Euphorbia esula along roadways. Local groups are tackling Lythrum salicaria with biocontrol agents and biennials like Pastinaca sativa with mechanical and chemical means.
Nowadays, noxious weeds and unwanted plants are affecting natural forests and afforestation especially in northern parts of Iran. The high diversity and density of these plants need a heavy tool for their clearing and elimination and considerable amount of money and time as well. This study was carried out to identify invasive plants in forest stands during five consecutive years in forest areas of Guilan, Mazandaran and Golestan provinces. Twenty-nine areas in northern side of the country were visited and five sites were selected for further studies. Selected sites examined weekly or ten days interval.

The noxious weeds are appeared in various forms such as annual, biennial, perennial, bushes and shrubs. They occupy the vast area of forests and disrupt the normal growth of forest stands e.g. through competition for water, nutrients, light, shading of seedling and production of some materials which reduce the growth of plants and forest trees (allelopathy).

In this research, 22 annual, biennial and perennial plant species, 33 trees and shrubs and 5 forest tree species, sprouts were evaluated as invasive plants in forest stands and plantations in Northern Iran. Among them, 8 main species as: Rubus spp., Sambucus ebulus, Paliurus spina-christi, Pteridium aquilinum, Smilax excelsa, Pteris cretica, Parotia persica and Carpinus betulus L. were identified. They were cited by scientific name and some information about their ecology, phenology, damage and density percentage. The root suckers and sprouts of forest trees had also serious difficulties in silvicultural practices.

For investigation on the present status of exotic weeds in Korea, the number of exotic weed species, their inflow time and its native regions were examined with literature and field survey was also conducted for seven years from 1995 to 2001. In order to obtain information on distribution and inhabitation of exotic weeds, we usually surveyed the surroundings of main harbors such as Inchun, Pusan, Gunsan, Mokpoe and Yeosu which grain is usually imported, near roadside for transport of import grain and around dairy farm and pastureland. In addition, we surveyed exotic weeds troublesome in cultivated area including crops like feed corn and grains. Newly found species were identified based on domestic and foreign plant picture book. Exotic weeds naturalized in Korea are composed of 315 species in 37 families until 2001. Among the weed floras, 135 exotic weed species have been reported since 1980. The number of exotic weeds by the native regions was 72, 32, 122 and 29 in North America, South America, Europe and Asia, respectively. Many species of exotic weeds are distributed in the near of ports, roadside for transport of imported cereals, circumference of highway and reclained land with wastes. 72 and 56 exotic weeds are found in farmland and pasture, respectively. Also, exotic weed newly founded in cultivated area from 1995 to 1999 was reported as 34 species of 13 family.

In 2001 a model was developed to rank pest plants for their potential to pose a threat to ecosystems in the greater United States. Information has been added to the species database and the model has been refined. Approximately 700 candidate species have been listed and about half of these fully scored for potential invasiveness, geographic suitability, damage and entry. In this phase, fact sheets were prepared for the next 25 highest scoring pest plants that are currently not known in the United States. Some of the fact sheets created include willow-leaved hakea (Hakea salicifolia), an ornamental shrub native to Australia that has invaded South Africa; tiebush (Wikstroemia indica), a tropical shrub toxic to mammals, but grown as a medicinal or culinary herb in Asia; hahah-go-husa (Gnaphalium affine), an annual weed in Asia; and prostrate globe-amaranth (Gomphrena celosioides), an annual crop weed native to South America that has become naturalized in several countries in Asia, Australia and Africa. Under the U.S.A. Plant Protection Act of 2000, these 25 species will be considered for listing as noxious weeds. Other species were scored which are cultivated in the United States but not known to be naturalized. It is believed that ranked species in trade in the United States pose the greatest threat because pathways for entry already exist. By providing industry with the information from this project, it is believed that there will be a reduction in the use of ornamental plant materials that might endanger agricultural and natural ecosystems.

Scotch brome (Cytisus scoparius (L.) Link) and gorse (Ulex europaeus L) are exotic plants that were introduced in Canada, over a century ago, but have escaped, proliferated and are posing a serious threat to forested and other landscapes in southern British Columbia. Their several characteristics which promote invasiveness and displacement of native species, are: reduced leaves, active stem photosynthesis, nitrogen fixation, prolific seed production, longevity of seed banks, rapid vertical growth, adaptability to various ecological niches and lack of natural enemies. There are few data on the impact of Scotch brome on conifers in British Columbia. Two experimental field plots were established on Vancouver Island to determine the nature and extent of invasiveness in forested areas and on impact on conifer crop trees. Influence of photosynthetically active radiation (PAR) on Scotch brome and Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) seedling growth were measured. Results demonstrated that Scotch brome reduces the input of PAR and retards the height-volume growth of conifer seedlings. Detailed methods of control are discussed.
S24MT11P00

INVASIVE ALIEN SPECIES: DEVELOPMENTS TOWARDS A DUTCH POLICY

A.J.W. Rotteveel

Plant Protection Service, P.O.Box 9102, 6700 HC Wageningen, the Netherlands. Email: a.j.w.rotteveel@minlnv.nl

The Netherlands have in 1992 signed and in 1994 ratified the CBD convention and in doing so have committed itself to developing a policy against the negative impacts of invasive alien species (IAS) according to article 6h. This is not an easy task for several reasons. First of all Europe in general, and the Netherlands in particular, have a history of over 500 years of alien biological invasions. The Netherlands have always been, and still are, an important gateway into Europe, and from Europe to the world, of trade in plants. Moreover, the Netherlands are major producers of ornamentals which are sold all over the world. Dutch growers constantly search and develop new ornamental species everywhere in the world. In this context the Netherlands have a special position in the global invasive species problem and it is aware of its special position. The Direction for Nature Management of the Ministry of Agriculture, Nature Management and Food Quality is currently developing a policy towards IAS in close cooperation with the Plant Protection Service and the National Expertise Centre of the Ministry. The Plant Protection Service is already active in the technical field of IAS by contributing to IAS work of the International Plant Protection Convention (IPPC) and the European Plant Protection Organisation (EPPO). An update on the state of development will be presented.

S24MT11P00

ERADICATION—EVALUATING WHEN TO GO FOR IT!

F D Panetta¹ and Susan M Timmins²

¹Alan Fletcher Research Station, Department of Natural Resources and Mines & CRC for Australian Weed Management, PO Box 36, Sherwood, Queensland 4075, Australia, dane.panetta@tnm.qld.gov.au
²Science & Research, Department of Conservation, PO Box 10-420, Wellington, New Zealand, stimmins@doc.govt.nz

Weed eradication is often desired but rarely achieved—it's a big ask! Eradication requires the elimination of every single individual of a weed, with little likelihood of re-invasion. Eradication may be the best management strategy, but only if it is possible. We have developed a decision tree to determine whether eradication should be considered for a particular weed infestation. It asks about the socio-political climate (e.g. is the weed widely cultivated), the probability of subsequent invasion, availability of suitable control methods, and the effort needed to eradicate the infestation. Various factors affect the amount of effort required to achieve eradication—logistic, detection, biological and control factors. Our scoring system captures their impedance value. Logistics takes into account the number and accessibility of infestations. Detectability relates to conspicuousness of the weed at various stages in its phenology within the invaded vegetation. Some biological characteristics—such as vegetative reproduction capability, short period before seed production and long-lived seeds—increase eradication effort. Similarly, eradication success can be impeded if expensive control methods or multiple treatments are required and if there is limited chance of stopping further dispersal of the weed. Another major influence on eradication feasibility is the area of infestation. Likelihood of success declines rapidly with increasing area of a weed infestation. Our approach combines the area of infestation with the factors that impede eradication to give an overall score for eradication effort. Whatever the score, eradication may still require long-term commitment and so should not be embarked upon lightly.

S24MT11P00

NOVEL GRASSLAND FUEL CHARACTERISTICS CAUSED BY THE INVASION OF AN INTRODUCED AFRICAN PASTURE GRASS IN SOUTHEASTERN AUSTRALIA.

John Stoner, Robyn Adams and Dianne Simmons.

School of Ecology and Environment, Deakin University, 221 Burwood Highway, Burwood, Victoria, 3125, Australia. Email jrston@deakin.edu.au

Phalaris (Phalaris aquatica) is a widespread introduced pasture species in southeastern Australia. It is forming a “new” vegetation type and consequently a “new” fuel type. Changes to fire regimes resulting from the “new” fuel characteristics of Phalaris may have important consequences for ecological management, fire management, and public and firefighter safety. Fuel characteristics, including fine fuel loads, depth of fuel bed, vertical height, horizontal continuity, stalk biomass and fuel bed bulk density, were examined in native Kangaroo Grass (Themeda triandra) grasslands invaded by exotic Phalaris (Phalaris aquatica). Mean fine fuel loads of Phalaris were 27.0 t/ha, approximately three times that of Kangaroo Grass. Depth of fuel bed, vertical height and stalk biomass were also significantly increased, whilst horizontal continuity and fuel bed bulk density were not significantly different, resulting in a well aerated, continuous fuel bed with a greatly increased biomass. Alterations to fuel characteristics caused by Phalaris invasion will significantly impact on fire behaviour, and are likely to cause irreversible damage to some native plant communities.

S24MT11P00

IVA XANTHIFOLIA NUTT. - NEW INVASION WEED IN SERBIA

B Veljkovic¹, S Vrbnicin², D Marisavljevic³

¹Chemical Agrosava, 11070 Novi Beograd, P. Toljatija 5/IV, Serbia, bveljkovic@agrosava.co.yu
²Poljoprivredni fakultet, 11080 Zemun-Beograd, Nemanjina 6, Serbia
³Institut za zaštitu bilja, 11000 Beograd, T. Dražera 9, Serbia, marisavljevicz@ptt.yu

A great diversity of weed flora of about 1000 species exists in Serbia. From the total number of weed species, 58 belong to the adventive variety, predominantly from the Asteraceae family. The representatives of this family are aggressive weeds whose invasion is realized through strong competitive pressure in their new fitocenoze. One such aggressive weed is Iva Xanthifolia Nutt., first time observed in Serbia in 1966 (Sainović & Koljaždžinski) - permanent danger for ruderal and arable lands. The biological characteristics of Iva Xanthifolia Nutt are of an enormous vegetative and generative potential, efficiency in spreading, competitive domination in relation to the greater weed species, ecological plastics are preconditions for efficient spreading of this variety throughout the greater region of the Balkans.

Observation and the quantitative evaluation of the presence of Iva xanthifolia has been done in 30 localities, in ruderal areas as well as on arable land. A numerical and efficacy scale from 1 to 9 was used (Westhoff & Maarel, 1973). Obtained results are presented on the UTM screen of a 10 X 10 km dimension. The greatest frequency has been observed in ruderal locations which presented a threshold on the door of agrophytocoenosis. In arable crops a high presence is observed in soyabean, corn and sugar beet. Previous investigations carried out to get information about the chemical control of Iva Xanthifolia in different crops gave good results especially in corn and sugar beet (Marisavljevic & Veljkovic, 2000).
The most cost effective technique in the management of invasive weeds is prevention and early intervention. This is recognised as a principle in the Australian National Weed Strategy 1997. Yet most resources have been dedicated to controlling weed infestations with limited attention given to preventing their further spread.

Human assisted spread is the major means of long and/or short distance movement for many weeds. This has been demonstrated by outbreaks of weeds that can be attributed to movement of contaminated products, harvesting machinery, earthmoving machinery, livestock and vehicles. Other means of movement include attachment to clothing.

A project was conducted to develop practices to enable land managers, machinery operators and others to be able to minimise weed seed movement, to promote awareness of the issue and to develop legislative support. A subsequent project had the objective of further developing practices and promotion. A reference group of industry and government representatives advised the project officer on identifying needs and preparing products.

The projects resulted in:
- Best practice procedures for clean-downs, inspections and washdown facility construction.
- Inclusion of provisions in legislation creating offences for supplying contaminated things or moving contaminated vehicles on a road.
- Developing a Hygiene Declaration scheme for vendors to advise purchasers that things being sold are, or maybe, contaminated.
- Producing location maps for existing washdown facilities and facilitating construction of new washdown facilities.

Development of promotion products to create weed seed awareness.

Key words: Prospis juliflora, alien, Ethiopia

ALLELOPATHIC EFFECTS OF METANOL EXTRACTS AND ROOT EXUDATES OF COMMELINA DIFFUSA, COMMELINA VIRGINICA, TRADESCANTIA SP AND ZEBRINA PENDULUM ON LACTUCA SATIVA

Arnaud De Ch Olga Regina

Universidad Nacional Experimental del Táchira. Decanato de Investigación. Dpto de Agronomía. Lab. de Fisiología Vegetal. Email: oraana@unet.ve

The allelopathic potential of metanol extracts and root exudates of Commelina diffusa, Commelina virginica, Tradescantia sp and Zebrina pendula collected in coffee farms on the germination and radicle length of Lactuca sativa was evaluated in petri-dish bioassays. Metanolic extracts of leaves, shoot and root were roto-evaporated and lyophilized (once eliminated the solvent) and the remainder was re-dissolved in water before their application. Root exudates were obtained from plants originating from stolons and growing in 4-L pots on a pre-washed and sterilized sand substrate supplemented daily with 50 ml distilled water and with complete Hoagland solution every three days. The exudates collection system containing XAD-4 resin was installed 60 days after transplanting the stolons at about flowering initiation. Inhibitory activity of methanolic extracts was determined by adding desired concentrations of the extracts to petri dishes laid with Matricaria inodora, Papaver rhoeas, Galium aparine, Apera spica-venti, Alopecurus myosuroides, Zea mays and seed leachates of winter wheat, suggesting that interference from these weed species significantly retarded the germination of corn. In pot experiments some results showed that phytotoxins present in plant residues get detoxified in soil over a longer decomposition period of three months. Neither the shoot water extracts nor the plant residues of winter annuals (Matricaria inodora, Papaver rhoeas) retarded significantly the growth of winter wheat, suggesting that interference from these weed species is perhaps due to competition.

STOP THE WEEDS - MINIMISING WEED SEED SPREAD

M J Barker\(^1\), G Zerner\(^2\), G W Fisher\(^1\) and B J Wilson\(^1\)

\(^{1}\)Queensland Department of Natural Resources, Mines and Energy, Land Protection, GPO Box 2454, Brisbane, Australia 4001, \(\text{M zerner@nrm.qld.gov.au}\)

\(^{2}\)Queensland Department of Natural Resources, Mines and Energy, PO Box 2, Warwick, Australia 4370, \(\text{Gary.Zerner@nrm.qld.gov.au}\)

The cost most effective technique in the management of invasive weeds is prevention and early intervention. This is recognised as a principle in the Australian National Weed Strategy 1997. Yet most resources have been dedicated to controlling weed infestations with limited attention given to preventing their further spread.

Human assisted spread is the major means of long and/or short distance movement for many weeds. This has been demonstrated by outbreaks of weeds that can be attributed to movement of contaminated products, harvesting machinery, earthmoving machinery, livestock and vehicles. Other means of movement include attachment to clothing.

A project was conducted to develop practices to enable land managers, machinery operators and others to be able to minimise weed seed movement, to promote awareness of the issue and to develop legislative support. A subsequent project had the objective of further developing practices and promotion. A reference group of industry and government representatives advising the project officer on identifying needs and preparing products.

The projects resulted in:
- Best practice procedures for clean-downs, inspections and washdown facility construction.
- Inclusion of provisions in legislation creating offences for supplying contaminated things or moving contaminated vehicles on a road.
- Developing a Hygiene Declaration scheme for vendors to advise purchasers that things being sold are, or maybe, contaminated.
- Producing location maps for existing washdown facilities and facilitating construction of new washdown facilities.

Development of promotion products to create weed seed awareness.

Key words: Prospis juliflora, alien, Ethiopia

WINTER WHEAT (TRITICUM AESTIVUM) AND CORN (ZEA MAYS) AS RECIPIENT SPECIES IN ALLELOPATHIC RESEARCH

I Béres\(^2\) and G Kazinczy\(^2\)

\(^{1}\)University of Veszprém, Georgikon Faculty of Agricultural Sciences, Keszthely, Hungary. E-mail address herbolgia@georgikon.hu; \(^{2}\)Office for Academy Research Groups Attached to Universities and Other Institutions, Virological Group, University of Veszprém, Georgikon Faculty of Agricultural Sciences, Keszthely, Hungary. E-mail address H11895HOR@ELLA.HU

Corn (Zea mays) and winter wheat (Triticum aestivum) are the main arable crops in Hungary. Although chemical weed control can solve weed problems in these crops, because of different reasons (changes in ownerships, portion of large arable fields etc.), heavy weed infestations may occur, causing serious yield losses due to competition and allelopathy. The aim of our research work was to study the allelopathic effect of some annual and perennial weeds, widespread in corn and winter wheat. It has been concluded that allelopathic effect of weeds on germination and development of recipient species greatly depended on donor and recipient species, phenological stage of the donor plants, plant parts and preparation methods of the extracts (water, acetone and ethanol ones, different concentrations). Generally it can be said that extracts at high concentrations, and of organic solvents have more inhibitory effect as compared to lower concentrations and water ones, respectively. Corn proved better test species as compared to wheat. Shoot and root extracts of Asclepias syriaca, Datura stramonium, Ambrosia artemisiifolia, Cirsium arvense and seed leachates of Iva xanthifolia significantly retarded the germination of corn. In pot experiments some results showed that phytotoxins present in plant residues get detoxified in soil over a longer decomposition period of three months. Neither the shoot water extracts nor the plant residues of winter annuals (Centaura cyanus, Galium aparine, Apera spica-venti, Aloepecurus myurosoides, Matricaria inodora, Papaver rhoeas) retarded significantly the growth of winter wheat, suggesting that interference from these weed species is perhaps due to competition.
Weed control is an expensive necessity in crop production as competition reduces crop yields. Cover crops can be used as they improve sustainability and suppress weed growth. A field trial was conducted to evaluate the influence of three cover crop residues on weed growth and Zea mays performance. The cover crops, Secale cereale, Avena sativa and Lolium multiflorum, were planted in March 2002 and sprayed with glyphosate in September 2003. These residues were left in situ, with Zea mays planted into this residue with no further control of the weeds. Weed biomass, species and density and Zea mays germination and growth were assessed. Competition from weeds resulted in sub-optimal growth. As a result, Zea mays germination following planting, and at four month growth height, was lower when compared to the chemically weeded treatment. When compared to the weedy control, the poorer performance of the cover cropping treatments may indicate that, in addition to competition for light, water and nutrients, chemicals released from the decomposing mulches may be interfering with the growth of the crop.

The term allelopathy has recently been broadened, including not only plant-plant interactions but also plant-microorganisms relations. Therefore the aim of our future work was to study the effect of some allelopathic weeds on systemic host - virus relations. (Nicotiana tabacum 'Samsun' - Obuda pepper virus (ObPV); Solanum nigrum - ObPV). Water extracts made from the fresh shoots and roots of Abutilon theophrasti, Cirsiun arvense and Asclepias syriaca were used for watering and spraying host plants. Hosts were mechanically inoculated with ObPV at four leaves stages. Water extracts of different weed species did not prevent virus infection. In some cases the appearance of systemic symptoms were delayed due to the allelopathic extracts. Sprayed root water extracts of A. syriaca and shoot extracts of C. arvense only slightly reduced the concentration of ObPV in N. tabacum 'Samsun' host. Plant extracts used in S. nigrum - ObPV relation, and for irrigation in N. tabacum 'Samsun' - ObPV relation did not reduce significantly virus concentration. In one case - sprayed with water extracts of A. syriaca roots - promoting effect on virus concentration has been observed in S. nigrum - ObPV relation. Our preliminary results suggested that there are no correlations between the inhibitory effect on the test plants and that on the host virus relations.

Weed control is an expensive necessity in crop production as competition reduces crop yields. Cover crops can be used as they improve sustainability and suppress weed growth. A field trial was conducted to evaluate the influence of three cover crop residues on weed growth and Zea mays performance. The cover crops, Secale cereale, Avena sativa and Lolium multiflorum, were planted in March 2002 and sprayed with glyphosate in September 2003. These residues were left in situ, with Zea mays planted into this residue with no further control of the weeds. Weed biomass, species and density and Zea mays germination and growth were assessed. Competition from weeds resulted in sub-optimal growth. As a result, Zea mays germination following planting, and at four month growth height, was lower when compared to the chemically weeded treatment. When compared to the weedy control, the poorer performance of the cover cropping treatments may indicate that, in addition to competition for light, water and nutrients, chemicals released from the decomposing mulches may be interfering with the growth of the crop.

The term allelopathy has recently been broadened, including not only plant-plant interactions but also plant-microorganisms relations. Therefore the aim of our future work was to study the effect of some allelopathic weeds on systemic host - virus relations. (Nicotiana tabacum 'Samsun' - Obuda pepper virus (ObPV); Solanum nigrum - ObPV). Water extracts made from the fresh shoots and roots of Abutilon theophrasti, Cirsiun arvense and Asclepias syriaca were used for watering and spraying host plants. Hosts were mechanically inoculated with ObPV at four leaves stages. Water extracts of different weed species did not prevent virus infection. In some cases the appearance of systemic symptoms were delayed due to the allelopathic extracts. Sprayed root water extracts of A. syriaca and shoot extracts of C. arvense only slightly reduced the concentration of ObPV in N. tabacum 'Samsun' host. Plant extracts used in S. nigrum - ObPV relation, and for irrigation in N. tabacum 'Samsun' - ObPV relation did not reduce significantly virus concentration. In one case - sprayed with water extracts of A. syriaca roots - promoting effect on virus concentration has been observed in S. nigrum - ObPV relation. Our preliminary results suggested that there are no correlations between the inhibitory effect on the test plants and that on the host virus relations.
Research in Mali has demonstrated that solutions of potash have herbicidal activity when used as either a soil drench or foliar spray. Although the herbicidal effects of concentrated salts and ash were widely recognized before the era of selective herbicides, no scientific reports exist on herbicidal aspects of potash. Soil-applied solutions of potash are highly phytotoxic but have undesirable persistence, whereas foliar applications show the desirable qualities of a contact herbicide: foliar necrosis of wetted tissues, but no residual effects. To explore the potential of potash as an herbicide, we have undertaken a detailed characterization of this substance. Foliar applications of aqueous potash solutions were toxic to a variety of crops and weeds, including dicot and monocot species. Elemental analysis of potash from Mali showed the major component to be potassium (41,020 ppm) followed by sulfur (883 ppm), phosphate (254 ppm), and other elements at much lower levels. Potash is readily available to Malian farmers as a byproduct of burning wood and crop residues. It is currently used in low amounts as a food additive. This represents an inexpensive, naturally-occurring herbicide that may fill needs for nonselective weed control in Malian agriculture.

Spreading and abundance of weeds in Hungarian cultivated areas have been monitored since 1950. Beside four general surveys, a country-wide monitoring programme has been run since 1990 on Ambrosia artemisifolia and since 2000 on A. retroflexus, Chenopodium album, Cirsium arvense, Cynops esculentus. In addition to their botanical importance, such surveys are of great interest for plant protection, because a key element of successful weed control is to know, which species are present at a particular place and how high their abundance may be. Moreover, weed management programmes cannot be developed without knowing the trends of weed spreading.

As a result of the surveys we could monitor changes of weed populations on cultivated areas. We wanted to find the ecological and economic reasons for increased or decreased importance of certain weeds. Continuing studies in 2003, we found relationships, such as changes of ownership and crop management programmes, building-up of resistance, slow warming and use of new herbicides in areas with large areas (sulfonylureas).

In case of certain weed plants, however, there had to be one or more reasons responsible for further enhancing conspicuously fast spreading or increasing weed infestation. With this in mind, we studied the following species: Ambrosia artemisifolia, Amaranthus retrofexus, Chenopodium album, Cirsium arvense, Matricaria inodora, Datura stramonium, Sorghum halepense, Eymus repens, Helianthus annuus, Xanthium spp., Abutilon theophrasti Asclepias syriaca, and found a common feature for all of them: ALLELOPTHY. We concluded that a weed species possessing this trait has an advantage over the majority of the other ones during their competition.
S24MT14P00
THE ROLE OF THE GLUTATHIONE S-TRANSFERASE ENHANCEMENT IN THE PROTECTIVE ACTION OF HERBICIDE SAFENERS

T Matola and I Jablonkai
Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, Hungary, matola@chemres.hu

Herbicide safeners are considered to increase the tolerance of crop plants to herbicides by enhancing the rate of herbicide detoxication in the protected plants. In order to further clarify the significance of induction of glutathione S-transferase (GST) enzymes and endogenous glutathione (GSH) levels in safening maize against the acetochlor the relationship of structure to safening efficacy, GST and GSH inducibility was studied by using safening and non-safening analogues of the MG-191 safener. Mono- and dihaloacetals, ketals and amides were synthesised and tested for their ability to alleviate toxicity of acetochlor to maize. Our findings revealed that the presence of dichloromethane moiety in the safener structure is not a prerequisite for the activity since monohalo acetals and amides showed also reasonable safening activity. Both open-chain and cyclic acetals were less active than the corresponding ketals. The ring size does not seem to be a decisive factor in the safening activity of cyclic ketals. The results on differential enhancement of the GST activity of maize demonstrated that the safener structure affects the specific expression of GSTs mediating detoxication of acetochlor in shoot as well as in root tissues. The amides were more effective inducers of GST levels than acetals or ketals. Since no correlation was established between the degree of elevation of GSH levels and GST activities and the safening activity of experimental molecules it can be concluded that the protective action of safeners is not necessarily related to their ability to induce factors involved in the acetochlor detoxication.

S24MT14P00
APPLICATION TIMING OF THE SAFENER ISOXADIFEN-ETHYL AFFECTS MAIZE TOLERANCE TO FORAMSULFURON

J A Bunting1, D E Riechers2 and C L Sprague3
1Department of Crop Sciences, University of Illinois, 1102 S. Goodwin Avenue, Urbana, Illinois, USA, <riechers@uiuc.edu>; 2Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan, USA, <sprague@msu.edu>

Foramsulfuron is a postemergence sulfonylurea herbicide for use in maize that provides selective control of grasses and some broadleaf weeds. Our objective was to determine the physiological and biochemical basis for differential tolerance of maize hybrids to foramsulfuron. Greenhouse and laboratory experiments were using [3H]Foramsulfuron were conducted to determine if hybrid tolerance was due to differential uptake, translocation, or metabolism of the herbicide. Applications of foramsulfuron were made with or without the safener, isoxadifen-ethyl. HPLC analysis of leaf extracts showed that differences in foramsulfuron were made with or without the safener, isoxadifen-ethyl. HPLC analysis of leaf extracts showed that differences in metabolism by P-450s. To further examine the role of the safener, applications of isoxadifen-ethyl were made 24 h before or after, or at the same time as foramsulfuron. The tolerant hybrid was injured when isoxadifen-ethyl was applied 24 h after foramsulfuron, but much less injury was observed when isoxadifen-ethyl was applied 24 h before or at the same time as foramsulfuron. Our current results indicate that the timing of foliar absorption and translocation of the safener isoxadifen-ethyl (relative to the herbicide foramsulfuron) may be a key factor in determining maize hybrid tolerance to foramsulfuron, and that proper spray adjuvants may be required to optimize absorption of foramsulfuron in conjunction with isoxadifen-ethyl. The rate of foramsulfuron metabolism is regulated by isoxadifen-ethyl, and maize hybrids differ in tolerance to foramsulfuron and in their response to isoxadifen-ethyl.

S24MT14P00
INVESTIGATIONS INTO THE MODE OF ACTION OF THE NOVEL GRASS HERBICIDE OXAZICLOMEFONE

K E Pallett, S K Miller and J D Cole
Bayer CropScience GmbH, Industriepark Hoechst, Building H872, D-65926, Frankfurt am Main, Germany
E-Mail ken.pallett@bayercropscience.com

Oxaziclomefone (MY-100: 3-[(3,5-dichlorophenyl)-1-methyl-ethyl]-2,3 dihydro -6-methyl-5-phenyl-4H-1,3-oxazin-4-one) is a new grass herbicide developed in a partnership between Bayer CropScience and Zennoh for the control of Echinocloa spp. in paddy rice and transplanted rice. It causes stunting and chlorosis of susceptible grass weeds in the glasshouse, in common with a number of known herbicides, however preliminary investigations indicate no inhibitory effects on known targets and processes. In order to gain some insight of the mode of action of an investigation into the histological and cytological effects of the herbicide has been carried out. Wheat was used as a model species in which the herbical symptoms could be readily identified and investigated. These have been compared to those of the growth-inhibiting herbicides, cinmethylin, dichlofenil and oryzalin (mitotic inhibitor) and dichlofenil (cellulose biosynthesis inhibitor) can be distinguished from oxaziclomefone by the appearance of swollen cortical cells and, in the case of oryzalin, by the appearance of aberrant mitotic figures. These studies have shown that the mode of action of oxaziclomefone is novel and can be distinguished from those of dichlofenil and oryzalin. There are similarities to cinmethylin, however, initial results have shown that oxaziclomefone does not inhibit asparagine synthetase and the target site for oxaziclomefone remains to be identified and appears to be unique amongst known and commercialised herbicides.

S24MT18P00
PUTTING WEEDS ON THE BIOSECURITY AGENDA

A C Bishop
Department of Primary Industries, Water, and Environment, P.O.Box 303, Devonport, Tasmania, 7310, Australia,
Andrew.Bishop@dpiwe.tas.gov.au

The Biosecurity agenda internationally, nationally and at a local level tends to focus on animal diseases, zoonoses, and plant disease and pests. More recently, the term biosecurity triggers references to protection against bioterrorism. Weeds are often seen as a separate issue, or at best an adjunct, to the biosecurity agenda. Reasons for this include the complexity of the weed management area, more immediate issues of exotic animal and plant disease spread and containment, and less advanced or developed areas of aspects of weed science such as weed risk assessment, and the biology of invasive weeds. This paper discusses weeds as an issue in relation to International treaties and agreements. An examination of weeds and how they relate to biosecurity policy development and delivery in Australia at a Federal and State level is also presented. The application of biosecurity approaches to animal and plant pathogens is reported with aspects of these approaches and procedures examined for application to weed issues. The examination indicates sharing of methodology and policy approaches in other biosecurity areas may help standardise approaches to weed biosecurity issues. Weeds must be recognised as an issue of equal importance to animal and plant pathogens on the biosecurity agenda, if weed impacts are to be effectively contained. Refinement and promotion of weed risk assessment methods, and profiling the importance of weed science in addressing weed issues will assist in this process. Prioritising weeds as a biosecurity issue will require the development of scientifically sound weed management policy both internationally and nationally.
In accordance with the Pest Control Products Act, pesticides must be demonstrated to be safe, effective, and to have a benefit or value prior to acceptance for registration for sale and use in Canada. Pest control products that are subject to registration include herbicides, PGR’s, adjuvants, insecticides, fungicides and anti-microbials. PMRA conducts a review of scientific data submitted in support of the proposed use claims and includes an assessment of the efficacy, crop tolerance, impact on rotational crops, resistance management strategy, and contribution to sustainability. Value assessment includes a determination of the lowest effective rate (LER) in terms of level, duration and consistency of control across a broad range of conditions. This avoids excessive dosages that may increase pesticide residues in food and result in increased exposure to applicators, bystanders, and the environment. LER provides a baseline for effective risk assessment and risk management decisions. LER also contributes to sustainable pest management objectives and mitigation of resistance development. A key initiative of PMRA regarding resistance management is the implementation of resistance management labelling which requires the addition of Mode of Action Groups and resistance management statements on the labels of commercial pesticides for agricultural uses. PMRA encourages submission of applications for reduced risk products under the reduced risk strategy. Recently Chondrostereum purpureum was registered for the inhibition of sprouting and regrowth of hardwood species in rights-of-way and forestry sites. Harmonizing efficacy data requirements with international regulatory organizations, such as EFPO, remains an ongoing objective.

In a typical year, agricultural inspectors and botany identifiers within the Animal and Plant Health Inspection Service (APHIS) and the Department of Homeland Security intercept and identify about 3,500 Federal noxious weeds. In the five years prior to April 2003, the most frequently intercepted Federal noxious weeds were onionweed (Asphodelus fistulosus), itchgrass (Rottboellia cochinichinensis), red rice (Oryza spp.), swampmorningglory (Ipomoea aquatica), giant hogweed (Heracleum mantegazzianum), turkeyberry (Solanum torvum), and dodder (Cuscuta spp.). Agricultural inspectors at the border find these Federal noxious weeds and others in various pathways, including passenger baggage, bird seed, human foodstuffs, plant and seed shipments for consumption and propagation, herbal medicine and dried flowers. Itchgrass seeds often hitchhike on railroad cars from Mexico; animated oats (Avena sterilis) hitchhike with stones, tiles, and sheepskins from Europe and the Middle East. Cargo and conveyances containing Federal noxious weeds are returned to the country of origin, treated, or destroyed. Inspectors seize and destroy regulated plant material in passenger baggage.

Seed production potential of predominant weed populations needs to be taken into account when estimating the long-term impact of any crop management practices. Prediction of weed seed production under field conditions is essential to the successful adoption of crop management practices, which will give the idea about subsequent weed infestations ensuing from a well-stocked seed bank. Twenty-five plants in each weed species were selected randomly from the cropped fields of low land and irrigated upland condition, and the number of seeds produced per plant and weed seed rain were calculated based on the no. of fruits and seeds per plant and number of plants per square meter. In low land ecosystem, the two predominant grassy weeds, higher seed production potential was observed with Echinochloa colona (3,530 seeds / plant). But, Echinochloa crus-galli contributed for higher weed seed rain of 92,254 seeds / m². Among the two predominant broad leaved weeds, Ammania baccifera had higher seed production potential as well as weed seed rain recording 2,670 seeds / plant and 33,110 seeds/m². In upland irrigated condition, Trianthema portulacastrum was the dominant weed closely followed by Parthenium hysterophorus. However, the seed production potential was higher with Parthenium hysterophorus (10,130 seeds / plant). The higher seed production potential of Parthenium hysterophorus contributed for the highest weed seed rain of 2, 43,126 seeds / m².
S24MT20BP00
STUDY ON WEED SEED BANK AT DIFFERENT SOIL LAYERS OF LOWLAND AND IRRIGATED UPLAND SITUATIONS

A. Senthil*, C. Chinnusamy, R. Shanmugasundaram and O. S. Kandasamy
AICRP-Weed control unit, Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore-641 003, INDIA

Composition of weed flora depends on seed bank composition and its dynamics. Seed bank is the source of weeds that persist in agricultural fields. The composition and density of weed seed in the soil vary greatly but are closely linked to the cropping history of the land. Hence a study on weed seed buildup under different agro ecosystems (low land and irrigated upland conditions) was made so as to predict the population of weed species in subsequent crops. Soil samples from 0-15 cm and 15-30 cm depths were collected from different locations of low land and irrigated upland conditions and were spread over shallow trays for germination and observations were recorded on number of weed seeds germinated and species wise emerged weeds. Significant differences were found for total weed seed density in each soil layers between different sampling locations (Blocks) of both lowland and upland irrigated conditions. Generally more number of weed seeds was observed in the upper layers (0-15 cm) than in the deeper layers (15-30 cm). Occurrence of grassy weeds was distinctly higher in the composition of weed seed bank in low land condition whereas, in upland irrigated condition broad-leaved weed species dominated the composition. Echinochloa crus-galli and Echinochloa oryzophila were the dominant grassy and broad leaved weed species respectively under lowland clay soil condition, whereas in irrigated upland with vertisol condition, Echinochloa oryzophila and Triantantha portulacastrum were the dominant grassy and broad leaved weed species respectively.

S24MT20BP00
ASSESSMENT OF COMPETITION BETWEEN TOMATO (LYCOPERSICON ESCULENTUM MILLER) AND BARNYARDGRASS (ECHINOCHLOA CRUS-GALLI[L.]) WITH A RECIPROCAL YIELD MODEL

A. Atri and M Partovi
Plant Pests and Diseases Research Institute, P.O. Box 1454, Tehran 19395, Iran, atr@ppdri.ac.ir

Barnyardgrass is one of the most important noxious weeds of tomato fields in Iran. An experiment was conducted at the Varamin Research Center during 2000 to study competition between tomato and barnyardgrass. The experimental design was a randomized complete block with 15 treatments and three replications. The treatments included pure stands of tomato at 2, 4 and 6 plants/m², barnyardgrass at 10, 60 and 110 plants/m², and mixed stands of the two species at complete factorial densities. Results indicated that tomato was a stronger competitor than barnyardgrass. The biologic and economic yields of tomato were affected mainly by intraspecific competition, while interspecific competition was mostly responsible for variation of these characteristics in barnyardgrass. Evaluation of competitive ability by comparing regression coefficients showed that the effect of each tomato plant on its economic and biologic yields was equivalent to 29 and 31 plants of barnyardgrass, respectively. In other words, each 0.034 and 0.032 plants of tomato had an equivalent effect of one barnyardgrass on reciprocal biologic and economic yields of tomato.

S24MT20BP00
QUANTITATIVE COMPETITION OF VOLUNTEER RYE (SECALE CEREALE L.) IN WHEAT (TRITICUM AESTIVUM L.).

Alireza Atri¹ and Mohammad Ali Baghestani²
¹Plant Pests and Diseases Research Institute, P. O. Box 1395-1454, Tehran, Iran. atri@ppdri.ac.ir
²Agricultural University, Coimbatore-641 003, INDIA

In order to study the competition effects by using reciprocal yield model of wheat against volunteer rye, an experiment was conducted at Research Center of Karaj and Varamin during 2001 and 2002 years. The experimental design was randomized complete block with 24 treatments and 4 replications. The competition design was bivariate factorial. The treatments included the pure stands of wheat at four-plant densities 350, 450, 550 and 650 plant/m² and volunteer rye at 10, 30, 50 and 100 plant/m² and mixed stands of two plants at complete factorial densities. Results indicated that the rye was a stronger competitor compared to wheat under water stress. With increasing precipitation, competitive ability of wheat increased against volunteer rye. The biologic and economic yields of wheat were mainly affected by interspecific competition in Karaj region. There was the same results at the first year of experiment in Varamin region, but at the second year due to increasing precipitation the biologic and economic yields of wheat were equally affected by inter and intra specific competition. Economic yield was more affected compared to biologic yield by rye densities. Evaluation of competitive ability, using regression coefficients showed that in Karaj, the effect of each rye plant on reciprocal grain yield of wheat at first and second years were equivalent to 3 and 2 plants of wheat, respectively and in Varamin were equivalent to 3 and 1.2 plants of wheat, respectively. In other words, each 0.36 and 0.51 plants of rye in Karaj and each 0.33 and 0.84 plants of rye in Varamin had an equivalent effect of one wheat on reciprocal economic yields at first and second years, respectively.

S24MT20BP00
STUDY ON MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS AFFECTING ON COMPETITIVENESS OF WINTER WHEAT (TRITICUM AESTIVUM) AGAINST WILD OATS (AVENA LUDOVICIANA)

Eskandar Zand¹ and Mohammad Ali Baghestani²
¹Weed Research Department, Plant Pest and Disease Research Institute, P.O.Box 1454, Tehran 19395, Iran, eszand@yahoo.com, baghestani@hotmail.com

In order to determine the effects of the morphological and physiological characteristics of different wheat genotypes against wild oats (Avena ludoviciana), field trails were carried out at weed research station of Plant Pest and Diseases Research Institute near the Karaj city during the 2000-2001 and 2001-2002 growing season. The experiments were conducted as a randomized complete block design with four replications and with factorial arrangement of treatments. Treatments included six wheat genotypes at two weedy levels (weedy and weed free). The wheat genotypes used in this study were three more-competitive (MC) genotypes (6618, M-75-5, M-75-13) and three less-competitive genotypes (Alamoot, Ghafghaz and M-75-5). The experiments results indicated that 6618 and M-75-5 genotypes were MC and LC, respectively on the base of competitive index (CI), wild oats biomass and grain yield in pure and mixed stand. Results indicated that wheat MC genotypes can be distinguished from LC ones through canopy height, total fertile stem, leaf area index (LAI), cumulative total dry matter (CTDM), crop growth rate (CGR), and relative growth rate (RGR). These criteria can be used in plant breeding program for screening MC genotypes from LC ones against wild oats.
After Chromolaena-dominated fallows.

In the humid forest regions of south Cameroon (central Africa), Stachytarpheta cayennensis on one side Chromolaena associated with secondary forest histories. Soil samples were taken from each study plot to assess Chromolaena or non-Chromolaena plots with different fallow intercropped in the fields opened from 5 - 7 year old fallows of species associated with the plots were assessed 6, 14, 30 weeks after planting, in all treatments, but not much difference between treatments if not for enrichment of the weed flora with time after planting, in all treatments, but not much difference between treatments if not for the number of seeds produced by A. theophrasti, is cultivated as a fibre crop in China and Tibet. From there it spread out to the Balkan and the Mediterranean countries and was introduced to America and Australia through the settlers. In the USA and Canada, it is one of the worst weeds in soybean and cotton. For about ten years, A. theophrasti occurs in Germany, mostly in sugar beet fields. It is tolerant to most sugar beet herbicides. Field studies were conducted in Czech Republic and Germany in 2003 to quantify competition effects between sugar beet, A. theophrasti, and other weed species and to test several control methods. The number of seedlings for all species observed, the development stage and the aboveground biomass, beet weight and the number of A. theophrasti capsules were determined over the growing season. Averaging all treatments and independent of other weeds' competition sugar beet yield was significant reduced when the density of A. theophrasti was moderate to high (36-300 plants per m²) compared to a low density (2.7-9.3 plants per m²). Sugar beet yield is negatively correlated to A. theophrasti density and aboveground biomass. The common herbicide-mixture with the active components Desmedipham, Phenmedipham, Chloridazon, Quinmerac, Ethofumesat and Haloxyfop-R could control all weed species except for A. theophrasti. Therefore A. theophrasti could produce highest aboveground biomass in these plots. The additional application of Saffari (Trifusulfuron) decreased A. theophrasti density and aboveground biomass and thus increased yield of sugar beet by 23 %. The combination with a hoe increased yield by 41 %. Other combined treatments did not suppress A. theophrasti competition. Because of the strong competition effect, the lack of effective control methods and the large number of seeds produced Medicine, University it is recommended to document sugar beet fields where this species has been introduced and to develop new control strategies against A. theophrasti in sugar beet including chemical, mechanical and prophylactic agents.

Abutilon theophrasti (Velvetleaf), is cultivated as a fibre crop in China and Tibet. From there it spread out to the Balkan and the Mediterranean countries and was introduced to America and Australia through the settlers. In the USA and Canada, it is one of the worst weeds in soybean and cotton. For about ten years, A. theophrasti occurs in Germany, mostly in sugar beet fields. It is tolerant to most sugar beet herbicides. Field studies were conducted in Czech Republic and Germany in 2003 to quantify competition effects between sugar beet, A. theophrasti, and other weed species and to test several control methods. The number of seedlings for all species observed, the development stage and the aboveground biomass, beet weight and the number of A. theophrasti capsules were determined over the growing season. Averaging all treatments and independent of other weeds' competition sugar beet yield was significant reduced when the density of A. theophrasti was moderate to high (36-300 plants per m²) compared to a low density (2.7-9.3 plants per m²). Sugar beet yield is negatively correlated to A. theophrasti density and aboveground biomass. The common herbicide-mixture with the active components Desmedipham, Phenmedipham, Chloridazon, Quinmerac, Ethofumesat and Haloxyfop-R could control all weed species except for A. theophrasti. Therefore A. theophrasti could produce highest aboveground biomass in these plots. The additional application of Saffari (Trifusulfuron) decreased A. theophrasti density and aboveground biomass and thus increased yield of sugar beet by 23 %. The combination with a hoe increased yield by 41 %. Other combined treatments did not suppress A. theophrasti competition. Because of the strong competition effect, the lack of effective control methods and the large number of seeds produced Medicine, University it is recommended to document sugar beet fields where this species has been introduced and to develop new control strategies against A. theophrasti in sugar beet including chemical, mechanical and prophylactic agents.
S24MT20BP00

MORPHOLOGICAL RESPONSE TO ABOVE- AND BELOW GROUND COMPETITION IN SEEDLINGS OF RUMEX CRISPUS L.

E A Pye, M L Hansson and P Redbo-Torstensson

Department of Ecology and Crop Production Science, SLU, Sweden.
Alexandra.Pye@evp.slu.se, Margareta.Hansson@evp.slu.se, Peter.Redbo-Torstensson@evp.slu.se

The aim of the study was to investigate how a problematic weed species copes with nutrient- and light-related stresses caused by interspecific root and shoot competition, respectively. This knowledge is important for the process of developing efficient non-chemical control strategies. R. crispus seeds were sown into a dense Lolium perenne L. sward established in boxes. Using a split-plot design, half of the Rumex seedlings were grown in a polythene pipe to exclude root competition and the other half in gaps of corresponding diameter. Additional treatments were fertiliser levels (70 and 180 kg N/ha) and clipping of the sward to either five or twelve cm height. After three months, fresh and dry weights for shoots and roots (tap root and fine roots) were measured, as well as the number of leaves and total leaf area. The exclusion of root competition was by far the dominant factor influencing the performance of the Rumex seedlings. Seedlings growing in pipes had a higher number of leaves, a greater total leaf area, and higher dry weight for both shoots and roots. Clipping regime strongly affected plant morphology, causing thinner and fewer leaves with longer rosette petioles in the taller sward. Nitrogen level had little direct effect, but often interacted with light level as seedlings competed more successfully for light when nitrogen was available. The main conclusion is that root competition decidedly reduces growth of Rumex crispus, while the species makes morphological adaptations in response to shoot competition.

S24MT20BP00

ECOPHYSIOLOGICAL TRAITS ENHANCING COMPETITIVENESS OF IRANIAN WINTER WHEAT (TRITICUM AESTIVUM) AGAINST WILD OAT (AVENA LUDOVICIANA)

Hamid Rahimian Mashhadi 1 and Eskandar Zand 2

Tehran University, College of Agriculture, Karaj, Iran, hrahimian@hotmail.com 2- Dept. of Weed Science, Plant Pest & Diseases Research Institute, Tabnak Ave. Evin, Tehran, Iran, eszand@yahoo.com

An experiment was conducted during 1996-1997 growing season in Mashhad, (NE of Iran) to evaluate the genetic improvement in ecophysiological traits that contributes to competitiveness of Iranian winter wheat cultivars against wild oat. Six Iranian winter wheat cultivars released during the past 40 years were planted in a randomized complete block design with factorial arrangement of treatments and three replications. Each cultivar was planted at its own optimum seeding rate with and without wild oat competition. Wild oat was planted at a constant density of 80 plants per square meter. The results showed that more recent cultivars had much higher competitive ability than older cultivars. Alvand (The most recent cultivar) had higher dry matter accumulation rate, crop growth rate (CGR), leaf area index (LAI) and relative leaf area growth rate (RLGR) compared to Bezostaya (the oldest cultivar). Alvand positioned a higher proportion of its leaf area in the upper canopy layer. Wild oat height was lower when it was competing with Alvand in comparison to when it was competing with Bezostaya. It was found that following characteristics were the most important criteria to evaluate the competitive ability of winter wheat against wild oats: 1) Leaf area at the end of wheat tillering stage. 2) Final wheat leaf area index.3) Relative leaf area index of crop in comparison to wild oat, and 4) The canopy layer where the highest wheat leaf area is positioned.

S24MT20BP00

ROLE OF MOISTURE AND PLANT POPULATION ON COMPETITION BETWEEN WHEAT AND WILD OAT UNDER LATE SOWN CONDITIONS

Samunder Singh1,2 and R. K. Malik1

1Department of Agronomy, CCS Haryana Agricultural University, Hisar 125 005, India. 2Presently, visiting fellow, University of Florida, USA, samunder@crec.ifas.ufl.edu

Wild oat (Avena ludoviciana) is the most competitive grass weeds of wheat in India. Crop-weed competition is influenced by several factors including sowing time, moisture and plant geometry. Delayed sowing of wheat from November to December in north-west India has been found better to control wild oat, a dominant weed. Increased control of wild oat by herbicides under late sowing could be due to poor competitive ability of wild oat and can be exploited for better weed control efficacy. Weed competition studies were carried out under field conditions using rhizotron tubes of 1.25 m length placed in trenches and covered with soil to provide natural climate. Six plant population (6:0, 5:1, 4:2, 3:3, 2:4, 1:5) and three moisture ratios (0.6, 0.9 and 1.2 ID/CPE) were compared in dunal sand supplemented with Hewitt nutrient solutions with 4 replications. Plant height, total and effective tillers, root length, root/shoot weight and grain yield was recorded at harvest. Increase in moisture from 0.6 to 1.2 ID/CPE ratio, significantly increased effective tillers, plant height, shoot weight and grain yield of wheat, but total tillers, root length and root weight was unaffected, data averaged over population. The grain yield of wild oat decreased with increase in moisture in competition with wheat; other parameters were unaffected except increase in shoot weight. Plant population of wheat and wild oat in the rhizotron tubes had significant effect on the recorded parameters except plant height. The data suggests that wheat was more competitive with wild oat under late sown conditions.

S24MT20BP00

DEVELOPMENT AND COMPARISON OF CYNODON DACTYLOON (L.) PERS. IN SUGAR CANE

M. A. A/Rahman

Sugar cane Research Dept., Kenana Sugar Co., Sudan

A field study was conducted on the furrow irrigated sugar cane fields of Kenana Sugar Company, Sudan. The objective was to assess the growth and competitiveness of Cynodon dactylon (L.) Pers. that was established in newly planted cane (PC) and continued into subsequent ratoon crops. One week after cane planting, C. dactylon seedlings three weeks old, were transplanted along the cane rows at a density of 31 plants/10m row. The infestation was allowed to compete with sugar cane for the entire growing seasons. At the end of the first year crop (PC), The biomass of shoots and rhizomes of C. dactylon were 162 g/m2 and 1.8 Kg/m2, respectively. The shoot biomass of C. dactylon increased to 257 and 277 g/m2 in the second (1R) and Third (2R) year crop, respectively. Likewise, the biomass of rhizomes increased to 4.7 and 5.6 Kg/m2, respectively. Sugar cane stalks populations and cane yields also decreased progressively with each successive crop where C. dactylon was better established.

Key words: Cynodon dactylon, competition, sugar cane, crop cycle
Rapid population growth and food demand on the dry foot slopes West and North-West of Mount Kenya have lead to high natural resources pressure and an urgent need for sustainable production approaches. The paper examines experiences of small and large scale farmers with conservation agriculture. Small scale farmers growing maize, beans, wheat and potato were sampled. Conservation farming methods included ripping, mulching with minimum tillage and mulching with minimum tillage and agro-forestry. On large scale, a farm practising conventional tillage was compared to an adjacent farm practising conservation tillage. Under small scale farming, ripping increased soil moisture, reduced runoff and increased grain yields. Mulching with minimum tillage drastically reduced runoff and doubled ASW at the beginning of the season and could double maize and bean grain yields in average seasons. To reduce evaporation losses, farmers combined tillage (wind break) and minimum tillage with mulch and root pruning. Gravellia also provided shade, mulch, fodder, firewood and timber. On large scale, conservation Tillage lead to higher ASW and wheat yields, lower fuel cost, fewer dust storms, better soil structure and reduced soil erosion. Both small and large scale farmers applied herbicides to control weeds. Large scale farmers following conventional tillage were sampled.

Gravellia also provided shade, mulch, fodder, firewood and timber. On large scale, conservation tillage lead to higher ASW and wheat yields, lower fuel cost, fewer dust storms, better soil structure and reduced soil erosion. Both small and large scale farmers applied herbicides to control weeds. Large scale farmers following conventional tillage were sampled. Conservation farming methods included ripping, mulching with minimum tillage and mulching with minimum tillage and agro-forestry. On large scale, a farm practising conventional tillage was compared to an adjacent farm practising conservation tillage. Under small scale farming, ripping increased soil moisture, reduced runoff and increased grain yields. Mulching with minimum tillage drastically reduced runoff and doubled ASW at the beginning of the season and could double maize and bean grain yields in average seasons. To reduce evaporation losses, farmers combined tillage (wind break) and minimum tillage with mulch and root pruning. Gravellia also provided shade, mulch, fodder, firewood and timber. On large scale, conservation tillage lead to higher ASW and wheat yields, lower fuel cost, fewer dust storms, better soil structure and reduced soil erosion. Both small and large scale farmers applied herbicides to control weeds. Large scale farmers following conventional tillage were sampled.

Rice and wheat are the staple food crops occupying nearly 13.5 million hectares of the Indo-gangetic plains (IGP) of South Asia covering Pakistan, India, Bangladesh and Nepal. These crops contribute more than 80% of the total cereal production and are critically important to employment and food security for hundreds of millions of rural families. The demand for these two cereals is expected to grow between 2 to 2.5% per annum until 2020, requiring continued efforts to increase production and productivity. Expansion and intensification of the rice-wheat system during the Green Revolution (GR) period involving use of high yielding varieties, fertilizers and irrigation starting from the 60's led to increased production and productivity of both these crops. However, continued intensive use of GR technologies in recent years has resulted in lower marginal returns and, in some locations to salinization, overexploitation of groundwater, physical and chemical deterioration of the soil, and pest problems.

This paper presents findings from recent research on resource conservation technologies involving tillage and crop establishment options that are enabling farmers to sustain productivity of intensive rice wheat systems. Field results show that the resource conservation technologies provide higher yields, reduce water consumption, and show promise in reducing negative impacts on the environment. The paper assesses the role played by institutional innovations in international agricultural research and socio-economic changes in the IGP countries in the rapid development and adoption of these technologies by farmers.
S26MTZP05
UTILIZATION OF LOCAL ORGANIC FARM RESOURCES IN INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE AGRICULTURE IN EASTERN INDIA
R.C. Samui
Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishnapa University, Nadia, West Bengal, 741252, India.

The productivity in different cropping systems in India is declining day by day due to more dependence on chemical fertilizers and low use of organics. The farmers have to use more quantities of fertilizers to sustain the production level. The experiments conducted in different locations of the university farms as well as farmers' field have confirmed that the sustainability in production can be maintained if 25-50 % of the nutrient requirement is met through organic resources like decomposed straw, green manure, biofertilizer, enriched compost & crop residues. The results revealed that the substitution of 25-50 % nitrogen in rice through organic sources in Rice-Wheat System gave equal or higher yields over 100% NPK through chemical fertilizers. Application of 20Kg /ha extra N at last ploughing helped in efficient residue management in Rice-Rice System. The low cost enriched compost prepared by the farmers from farm wastes are useful in sustainable Agriculture. The use of organics not only make the production sustainable but also mitigate the multi nutrient deficiencies like S and micronutrients. Inclusion of groundnut greengram and other legumes in cropping system are useful in sustainable Agriculture particularly in Rice-Rice and Rice-Wheat cropping System in India.

S26MTZP02
ATRAZINE IN WATER AND BIODEGRADATION IN A RECHARGE AREA OF GUARANY AQUIFER IN BRAZIL
A L Cerdeira¹, N A G Santos², J. Ueta², I K Shuhama³, M C P Y Pessoa¹, S Smith Jr² and V L Lanchote³
¹Embrapa, Meio-Ambiente, Research Division of the Brazilian Ministry of Agriculture, C.P. 69, Jaguariaíva, SP, 88320-000, Brazil, cerdeira@cnpmo.embrapa.br
²Pharmacy School of Sao Paulo University, USP, Ribeirao Preto, SP, 14040-903, Brazil, juetad@usp.br
³USDA-ARS- National Sedimentation Laboratory, P. O. Box 1157, Oxford, MS, 38655, USA.ssmith@ars.usda.gov

The region of Ribeirao Preto City, Brazil, is an important agricultural area and recharge location for groundwater of the Guarany Aquifer. This paper reports research conducted to study atrazine in the Aquifer as well as biodegradation in soils of the area. Surface and ground water were collected and atrazine was measured by HPLC (High Performance Liquid Chromatography) followed by studies to predict leaching on the area by the CMLS-94, Chemical Movement Layered Soil simulation model. Soil samples were collected monthly for general microbiological and atrazine biodegradation studies. Treatments with incubation in various media were conducted and atrazine was measured by HPLC. Water samples collected showed only four atrazine detections in surface water with residues varying from 0.02 to 0.09 ppb. However, none of them were confirmed with GC-MS. No atrazine was detected in groundwater samples. Data obtained by the CMLS-94 simulations predicted that atrazine would not have reached the depth of the confined aquifer (40m). Soil incubation results have shown that some samples were able to degrade totally atrazine in the medium without N source, but they remained intact in N medium showing large variation depending on soil and media conditions. The detection of the presence of atrazine biodegrading microorganisms may explain the absence of residues in groundwater at the edge of the watershed, as shown in the water residue analysis and in the simulation model.

S26MTZP03
EFFECT OF GYPSIFEROUS WATER ON THE BIOLOGICAL ACTIVITY OF ATRAZINE, 2,4-D AND METOLACHLOR
SL Masiko¹, CF Reinhardt² and LK Kanyomeka³
¹ARC Small Grain Institute, Private Bag X29, Bethlehem 9700, South Africa, (labious@kgs1.agric.za)
²Department of Plant Production and Soil Science, University of Pretoria, Pretoria 0002, South Africa, (creinhardt@postino.up.ac.za)
³Department of Plant Production, University of Namibia, Namibia, (lkanyomeka@unam.na)

Possible herbicide injury to crops has been reported in areas where gysiferous water is used for irrigation, suggesting a possible interaction between herbicides and gysiferous water. This utilization of gysiferous water for irrigation of crops is one major method promising to reduce the problem of effluent mine drainage disposal and also the shortage of irrigation water. Gysiferous water is already used for irrigation of crops such as maize and wheat, on a commercial scale. The influence of gysiferous water on key behavioural aspects of three important herbicides: atrazine, 2,4-D and metolachlor were assessed in separate pot experiments. Dose response curves for the parameters' dry matter yield were obtained with a herbicide concentration range consisting of ten rates. Gypsum was mixed thoroughly with soil at the rate of 10% gypsum per total volume. Bioassay experiments were done to assess the bioactivity of the three herbicides in the presence or absence of gypsum. The results indicated that the activity of atrazine and 2,4-D were significantly increased in the presence of gypsum, while that of metolachlor was significantly reduced. These differential effects of herbicide activity would have important practical consequences for herbicide performance, i.e. weed control efficacy, selectivity, and behaviour in soil.

Aquatic plant toxicity tests are frequently conducted in environmental risk assessment to determine the potential impact of contaminants on primary producers. For the evaluation of agricultural impact on rice paddies, the chemical approach is not sufficient. The present study was designated to evaluate acute toxicity of several herbicides (molinate, azimsulfuron, bensulfuron, cinosulfuron, ethoxysulfuron and methsulfuron) on Lemma minor L. using the growth inhibition test. In addition, the phytotoxicity of adjuvants extracted from granular and emulsifiable liquid molinate formulations on L. minor was investigated. The herbicides were chosen as commonly used for weed control in rice paddies, an environment where L. minor commonly lives. The experimental approach involved standard laboratory conditions for the different chemicals. Plant growth was monitored over 12-days period following treatments by counting the fronds present and by determining leaf parameters (total leaf area, total leaf perimeter, chlorosis). After 12-days fresh and dry weight of Lemma plants were determined. The toxic endpoint (EC50) was 4.2 mg ai / L for pure molinate, while the EC 50 ranged between 0.5 and 15 g / L for sulfonyleurea herbicides. The molinate adjuvants showed toxic endpoints ranging between 250 and 500 mg/L. At low concentration (5-20 mg / L) the adjuvants extracted from molinate granular formulation caused an increase of Lemma growth rate. The results indicated that immediately after the treatments with molinate and certain sulfonyleureas the concentration of the active ingredient in paddy rice water exceeded the phytotoxicity threshold for L. minor.
An experiment was conducted during 2000-2001 to study the persistence of chlorsulfuron in a sandy loam soil incubated for different periods (0, 7, 15, 30, 60 & 120 days) at 15, 25, and 35 °C, using maize(Zea mays L.) as test plant in the screen house at Chaudhary Charan Singh Haryana Agricultural University, Hisar, India. The degradation of chlorsulfuron was found to be positively correlated with temperature. The increase in dry weight of shoot of maize at different incubation periods as compared to zero day incubation was 16, 24, 39, 56 and 72 % at 7, 15, 30, 60 and 120 days of incubation, respectively. Whereas, increase in concentration of chlorsulfuron (0 to 40 ppb) caused significant reduction in dry weight of maize shoot. The relative decrease in shoot dry weight was 48, 54, 64, 74 & 82 % with 2.5, 5, 10, 20 & 40 ppb chlorsulfuron, respectively. The dry weight of roots also followed the similar trends. After 120 days of incubation the relative potency of chlorsulfuron decreased by 1.81, 2.32 & 2.62 times at 15, 25 & 35 °C compared to zero day incubation. At 120 days of incubation the GR 50 (dose required for 50% growth reduction) at 35 °C was approximately 10 times higher than that at 15 °C. The half-lives of chlorsulfuron 142, 93 and 80 days at 15, 25 and 35 °C, respectively.

Herbicides applied to the crop field to get rid of unwanted plants. In our country labour crisis and cost of crop production had increased day by day. Besides killing weeds, these chemicals sometimes adversely affect the growth and activities of beneficial microorganisms in soil. There were no available reports on the stimulating effect of herbicides on microbial population in the rice rhizosphere soil. Therefore, a through investigation was necessary to draw a definite conclusion on the effect of herbicides on growth and activities of soil microorganisms. The aim of the study to investigate an experiment the effect of two herbicides with different doses, viz. rostar [5-terbutyl-3-(2,4-dichloro-5-isopropoxypyphenyl)-1,3,4-oxadiazol-2-one] and butabel [N-(butoxymethyl)-2-chloro-2,6-dinitro-anisaldimide] @ 1/2, 1 and 2 of recommended dose as kg a.i. ha⁻¹ in rice rhizosphere soil. The experiment was laid out complete randomized design with three replications. Soil samples were collected at 0(1hr), 10, 20, 30 and 45 days after herbicides application. Herbicides, rostar and butabel were stimulated except 0 and 45 days after inoculation. After 0 days (1hr) herbicides more stimulated up to 30 days for all the doses of herbicides including control. From this results herbicides positively stimulated the population of N₂-fixing microorganisms, mineralization of total nitrogen and availability of inorganic nitrogen in the rice rhizosphere soil up to 30 days except 0 and 45 days after application of herbicides.
S26MT13P03
WEEDS RESPONSES TO ALLELOCHEMICALS DERIVED FROM BUCKWHEAT (FAGOPYRUM ESCULENTUM MOENCH.)

A Golisz and S W Gawronska
Department of Pomology and Basic Natural Sciences in Horticulture, Faculty of Horticulture and Landscape Architecture, Warsaw Agricultural University, ul. Nowoursynowska 166, 02-787 Warsaw, Poland; e-mail: agolisza@alpha.sggw.waw.pl; gawronska@alpha.sggw.waw.pl

Allelopathic activity of buckwheat has been reported in several studies (Gaworski et al. 1993, Iqbal et al. 2002, Golisz et al. 2002) but complex studies are still missing. The aim of this work was to study the effects of buckwheat allelochemicals on quackgrass and aradibopsis plants growth and on germination of common weeds. Experiments were carried out in the field, growth chambers and laboratory conditions. The results showed that buckwheat cultivation, on heavily infested with quackgrass field, significantly inhibited growth and development of quackgrass and reduced biomass accumulation (up to 90%). Allelochemicals contained in aqueous extracts of buckwheat negatively affected quackgrass plants by: (i) visible wilting, (ii) developing symptoms of senescence and (iii) changed plant gas exchange.

The effect of these compounds on weeds germination was diverse: inhibitory (strong, moderate and slight) via no effect to slight stimulation. Chlorogenic acid and quercetin showed allelopathic – inhibitory – activity on A. thallana L. plants. Gene expression (by CDNA-AFLP) in quackgrass was changed by buckwheat allelochemicals.

S26MT13P04
ALLELOPATHIC POTENTIAL OF EUCALYPTUS ROSTRATA LEAF RESIDUE ON SOME METABOLIC ACTIVITIES OF ZEA MAYS L.

Gabr, M. A.1; Al-Wakeel, S. A. M.2; Hamed, B. A.2 and Hegab, M. M. Y.2
1 Department of Botany, Faculty of Science, Cairo University, Giza, Egypt.
2 Department of Botany, Faculty of Science, Cairo University, Beni-Suef Branch, Beni Suef, Egypt. (e-mail: momtazyehya@hotmail.com)

A greenhouse pot experiment was conducted to investigate the possible allelopathic effect of Eucalyptus rostrata leaves residue on the growth criteria and some metabolic activities associated with growth of 10, 20 and 30 – day – old corn plants. The lower level of Eucalyptus treatment (0.5 %, w/w) induced a stimulatory effect on the growth of shoot and root of corn plants. The positive effect was more obvious in shoot than in root growth. Inversely, high levels of incorporated Eucalyptus residue (1 and 2 %, w/w) caused marked reduction in the estimated growth parameters of both shoot and root, relative to their respective controls, and this reduction was concentration dependent. The total phenolic aglycone content of mature Eucalyptus leaf was 16.89 mg g-1 dry weight present as water-soluble secondary metabolites. HPLC revealed that, the p-coumaric acid was the most dominant, while caffeic, cinnamic and ferulic acids were detected in lesser amounts. The total phenolic content of corn shoot increased with the lower concentration of Eucalyptus residue and decreased with higher treatments. The lowest rate of allelochemicals induced stimulatory effect on the accumulation of photosynthetic pigment particularly chlorophyll “a” content. The enhancement of pigment accumulation was correlated with increase in the total carbohydrate production. Similarly, the total nitrogen and total phosphorus as well as nucleic acids were markedly induced. Negative pattern of changes in the metabolism of carbohydrate, nitrogen, phosphorus, phenolic compounds and nucleic acids as well as photosynthetic pigment was observed in corn plant treated with high rates of Eucalyptus leaf residue. These negative effects were concentration dependent.

Key Words: Allelopathy, Allelochemicals, Eucalyptus rostrata, Zea mays, growth and Metabolic activities.

S26MT13P05
ALLELOPATHIC POTENTIAL OF SOME MULTIPURPOSE TREE SPECIES (MPTS) ON WHEAT AND SOME OF ITS ASSOCIATED WEEDS

M A Khan, G Hassan and K B Marwat
Department of Weed Science
NWFP Agricultural University Peshawar- 25130, Pakistan
E-mail: ahmadaizak@yahoo.com

Laboratory based studies were undertaken during October/November, 2003 in Weed Research Laboratory, Department of Weed Science, NWFP Agricultural University, Peshawar, Pakistan to investigate the allelopathic potential of aqueous extracts of leaves of Prosopis juliflora and Eucalyptus camaldulensis and bark of Acacia nilotica. The concentrations studied included 150, 100 and 50 g L-1. A check (0 g L-1) was also included for comparison. The dry plant materials were ground and soaked for 24 hours in water. Ten seeds each of Triticum aestivum, Avena fatua, and Carthamus oxyacantha were used as test species. The data were recorded on germination percentage, seedling length (mm) and biomass (mg) plant-1. There were two identical runs of the experiment. The inhibition was recorded in all the species tested for all the parameters studied, but it was most pronounced in the germination percentage. C. oxyacantha was the most inhibited species, while wheat was most tolerant. Only 20% seeds germinated in this species when exposed to E. camaldulensis at 150 g L-1. All other concentrations of P. juliflora and E. camaldulensis proved severely inhibitory to germination of C. oxyacantha. For other parameters the inhibition was observed at higher concentrations of P. juliflora and E.camaldulensis. A. nilotica emerged as the weakest species in inhibiting the growth parameters of the tested species. The findings reveal that the allelopathic potential of P. juliflora and E. camaldulensis could be exploited for weed management in wheat due to the highlighted window of selectivity in wheat for the extracts studied. Further research is recommended to standardize the feasibility of commercial exploitation of these species as natural herbicides.

S26MT13P06
SCREENING FOR BIOHERBICIDE-PRODUCING STREPTOMYCetes ISOLATED FROM SOILS IN JORDAN

I Saadoun1, S Bataineh1, and K M Hameed2
1 Department of Applied Biological Sciences, Faculty of Science and Art, 2Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology P.O. BOX 3030, Irbid - 22110, Jordan, Phone +962-2- 720100 Ext. 23494, Fax: 962-2- 7095014, E-mail: isaadoun@just.edu.jo

Intensive application of chemical herbicides in Jordan is a growing concern to the environment. To avoid their negative effect indigenous actinomycetes’ secondary metabolites are investigated as bioherbicide alternative. Screening for bioherbicides-producing soil Streptomycetes in Jordan and their activity against weeds was considered. A total number of 149 Streptomycetes isolates were recovered from 15 different locations in Jordan and screened for their phytotoxic activity against cucumber and ryegrass seeds. Surface sterilized seeds were placed adjacent to 10 mm wide strip of Streptomycetes cultures streaked along the diameter of starch casein nitrate agar plates and incubated at 28°C. Phytotoxic activity was assessed based on the suppression of seed germination, discoloration of the root tip, reduction in the growth of the root and the shoot and final death of the root. Five active isolates were recorded. A diluted (1:1) cell-free broth of the most active isolate, MB13, from shaken broth culture incubated for 7 days at 28°C was used to irrigate cucumber and ryegrass seeds on filter paper inside Petri-dishes. Seed germination of ryegrass was completely inhibited, and the growth of cucumber radicles and the shoots was reduced by 75% compared to the control, distilled water only. An indigenous Streptomycetes strain which may provide an alternative to the synthetic herbicides and with a potential to control weeds has been discovered and subject to further investigations.
S26MT13P07
PRIORITIZING CONSERVATION OF MEDICINAL PLANTS IN SUB-SAHARAN AFRICAN FORESTS
G H Chekuimo Tagne

The demand for traditional herbal medicine is increasing rapidly in Sub-Saharan countries mainly because of harmful effects of synthetic chemical drugs. Harvesting plants for medicines to treat anything from mad cow disease to malaria could help alleviate the poverty of African communities. The recent upsurge in the use of herbal medicines has led to enormous commercial possibilities but many key issues remain unresolved.

Worldwide a total of at least 35000 plant species are used for medicinal purposes. The subcontinent has a rich floral diversity, totalling about 24 000 species, with 4 000 species used in traditional medicine. A study realized in Cameroon showed about 25 diseases are being cured by more than 500 medicinal plant species, which contribute in traditional medicine and the Cameroonian pharmacopoeia. While the future of African medicinal plants lies on enhancing people’s participation in the utilization and conservation of its forests, their use and conservation are across sectoral concerns that embrace not only the health care, but also nature conservation, biodiversity, economic assistance, trade and legal aspects. However, unsustainable forest management is causing biodiversity loss and massive soil erosion, as well as negatively affecting the economic future of many communities around the globe, especially in the Sub-Saharan tropics. The careful management of remaining forestlands will greatly determine collective ability to accommodate the world’s growing needs for food, medicine, wood, as well as the future of the planet’s biodiversity. Protection and preservation of traditional medicine, as well as African Sub-Saharan tropical forests are essential to ensure access to traditional forms of health care.

S29MT7P01
THE POTENTIAL FOR THE HONEYBEE TO CONTRIBUTE TO GENE FLOW BETWEEN CANOLA VARIETIES.
Jeanine Baker1 and Christopher Preston1
1Cooperative Research Centre for Australian Weed Management, School of Agriculture and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, jeanine.baker@adelaide.edu.au

Unwanted gene flow from herbicide resistance canola is of some concern in the community and existing literature indicates that gene flow can occur between canola varieties over large distances, but as isolated events. It has been suggested that these outbreaks are the result of insect mediated pollen transfer. A study was undertaken at Roseworthy, South Australia to determine the level of honeybee movement between canola fields. The proportion of honeybees leaving a field and continuing to forage in another field was estimated by spraying the bees with fluorescent paint as they foraged for nectar within a field. The following day honeybees were collected in adjacent fields and the numbers with traces of fluorescence dye on their bodies were recorded. The results showed that honeybees tended to return to the same field when resources were abundant, but that they foraged over larger distances when resources were scare or sparse. These findings suggest that the honeybee has the potential to contribute to gene flow over large distances but at a very low frequency. To investigate the potential impact of bee foraging behaviour, and associated gene flow, on a landscape scale these data and other published information on the basic behaviour of the honeybee were incorporated into a computer simulation model to test the hypothesis that insect mediated pollen transfer accounts for the low levels of gene flow that have been observed to occur sporadically at long distances from the source.

S29MT7P02
ROTATION, TILLAGE AND SEED DATE EFFECTS ON VOLUNTEER ROUNDUP READY WHEAT POPULATIONS
R E Blackshaw1, K N Harker2, G W Clayton2, J T O’Donovan3, E N Johnson4, Y Gan5, B Irvine5 and D A Derksen6
1Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB T1J 4B1 Canada, blackshaw@agr.gc.ca; 2Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1 Canada, harkerk@agr.gc.ca, claytong@agr.gc.ca; 3Agriculture and Agri-Food Canada, Beaverlodge, AB T0H 0C0 Canada, o’donovan@agr.gc.ca; 4Agriculture and Agri-Food Canada, Scott, SK S0K 4A0 Canada, johnson@agr.gc.ca; 5Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2 Canada, gan@agr.gc.ca; and 6Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3 Canada, birvine@agr.gc.ca

Roundup Ready (RR) hard red spring wheat is currently being evaluated for potential commercialization in Canada. A four-year field experiment was conducted at six sites in western Canada to determine the effects of RR crop frequency, tillage system, and seed date on volunteer RR wheat populations. A wheat-canalowheat-field pea rotation was established with various levels of RR crops in the wheat and canola phases of the rotation. Volunteer RR wheat populations were determined preseeding, before crop, herbicides, preharvest, and postharvest of each year. Volunteer RR wheat was managed with tillage, preseeded quialof, glufosinate plus clethodim in Liberty Link canola, quialof in RR canola, and imaxamoz/mazethapyr plus clethodim in field peas. When sufficient rainfall occurred after wheat harvest, numerous RR wheat plants emerged in September and October and were subsequently killed by winter frosts. Shallow cultivation compared with zero-till stimulated greater fall emergence and greater and/or earlier emergence of RR wheat the following spring. In cool, dry springs and at early seed dates, very few RR wheat plants were present at seeding and control measures were not warranted. Volunteer wheat was nearly always present at the time of applying in-crop herbicides, thus emphasis needs to be placed on in-crop control. The majority of RR wheat plants emerged in the year following wheat production with relatively small numbers being present in subsequent years. However, unforeseen events such as hail injury or sawfly damage can lead to high volunteer RR wheat densities that require control measures being conducted over more than one year.

S29MT10P01
INTEGRATED WEED MANAGEMENT IN RICE-BASED CROPPING SYSTEMS
Kil-Ung Kim
Dept. of Agronomy, College of Agriculture and Life Sciences, Kyungpook National University, Taegu 702-701, Korea
E-mail:kukim@knu.ac.kr

This paper briefly reviews weed management technologies in rice based cropping systems. Herbicides, due to their effectiveness and easiness in application, have become the major control measure in most Asian rice production systems. However, the repeated use of the same herbicides evolved more than 10 resistant weeds (mostly broadleaf weeds), against sulfonylurea herbicides, and Echinochloa crus-galli to butachlor and propanil. Herbicide rotation is recommended to minimize development of herbicide resistant weeds. In temperate Asia, rotation of rice with winter annual crops such as barley, wheat, garlic, onion and some vegetables grown under vinyl house has become widely adopted production systems. Double cropping is believed to help reduce infestations of difficult-to-control weeds in both rice and winter annual crops. Herbicides are also being used for the major control method in winter annual crops. Almost one-half of agricultural areas in Asia are covered by rain-fed rice based cropping systems. In tropical Asia, farmers grow vegetables (onion, eggplant, tomato, and garlic) in the dry season and rice in the wet season. Hand weeding and use of some herbicides are mainly used for controlling Cyperus rotundus and Digitaria sanguinalis etc. in vegetables. Another increased trend in Asian rice production systems is direct-seeded rice, occupying about 21% of the total rice area. Effective herbicides properly combined with other management technologies, based on rice ecosystems and economic condition, can be a presently available IWM package. Farmer incentives for adopting IWM package depend upon the relative prices of rice, labor and herbicides.
D.P. GAZZIERO
Embrapa Soja, Caixa Postal 231, CEP 86001-970, Londrina, Paraná, Brasil.
E-mail: gazziero@cpso.embrapa.br

The integrated management system should be used to control weeds, even though there are very few methods of control available. The weed management should be integrated to the farm production system to reduce the occurrence of weeds. Weed management means a work philosophy, which results in benefits of weed control throughout the years. Soybean, maize and wheat are crops that use high level of herbicides consumption, due its efficiency and fastness of work performance of chemical control. The high level of technology adopted in those crops results in vigorous development of the plants which is a competition advantage for them against the weeds, and providing conditions to the herbicides perform appropriated, allowing the reductions in doses and in use of some of them. Such system encompasses crop rotations, mulching, cultural weed control and weed control between crop seasons and the technology of herbicide application. There is a direct relationship among the dynamic of weed plant, soil preparation. The no till system constrain the development of some weed species such as Brachiana plantaginea, but also provide a good condition for development of Conyza bonariensis, Senecio brasiliensis and Digitaria insularis. The intensive usage of glyphosate in transgenic soybean (RR) will select tolerant and resistant weed species. The nature reacts to the men actions and adapt to the new condition. It is possible to keep the major crops free of weeds, depending upon the weed management system.

P R Westerman, T van Mourik, T J Stomph and W van der Werf
Group Crop and Weed Ecology, Department of Plant Sciences, Wageningen University and Research Centre, PO box 430, 6700 AK Wageningen, The Netherlands. Paula.Westerman@wur.nl, TjerdJan.Stomph@wur.nl

Farmers in the semi-arid regions of Africa can choose among a large number of strategies to control Striga hermonthica, a root hemi-parasite of grain crops. The decision to employ a particular method of control will - among other things - depend on its effectiveness. The objectives of this study were 1) to identify density dependent and independent stage transitions in the S. hermonthica life cycle and quantify these in a greenhouse trial and 2) to evaluate control strategies in a long term perspective by modelling the seed bank dynamics. In the experiment, sorghum plants were exposed to four seed densities of the parasite (20 000 – 350 000 seeds m⁻²). Below ground S. hermonthica development was assessed at 30 day intervals until crop maturity. Above ground development was assessed weekly. All stage transitions appeared to be density independent, except attachment of the S. hermonthica seedling to the host root. At 60 d post-emergence of the host, a fixed proportion of the seeds had attached to the host root system, but this was followed by a large and strongly density dependent mortality during the next 30 days, resulting in almost constant numbers of attached parasites per host, irrespective of the initial infestation level. Density dependence was included into the model to evaluate its impact on effectiveness of different control strategies. It was found that seed bank dynamics was not sensitive to control strategies that have their effect before the density dependent stage, but very sensitive to control strategies that affect S. hermonthica post-attachment.
S29MT16P02

PERSPECTIVES FOR HIGH TECHNOLOGY TO IMPROVE PHYSICAL WEED CONTROL IN ROW CROPS

S Christensen

1Danish Institute of Agricultural Sciences, Department of Agricultural Engineering, Research Centre Bygholm, DK-8700 Horsens, Denmark, svend.christensen@agrsci.dk

Inter-row hoeing in row crops has reached a high level of automation, now with guided automation systems to ease the steering task. So far no commercial NN-enabled intelligent medical systems have been developed for weeding the inter-row or close-to-crop area, which currently requires substantial input of hand weeding in most herbicide-free row crops. The inclusion of high technology for inter-row weeding might become a breakthrough in physical weed control in row crops leading to significant reductions, or even elimination, of the need for hand weeding. The major obstacle for the development of selective and accurate inter-row weed control is the lack of automated detection and classification of crop and weeds. Requirements for an automated inter-row weeder to operate with high accuracy become particularly crucial in poorly competitive row crops with limited spacing between individual crop plants. To further increase accuracy and reliability under such difficult circumstances, research is now focusing at the prospects of using electronic crop seed mapping to assist subsequent computer vision for a precision approach of the crop and weed seedlings. On seed positioning at sowing uses the technology of Real Time Kinematics DGPS to create an electronic field map with geo-referenced seed positions for each individual crop seed. The seed map data can then be used for guiding a vision camera to the appropriate positions of the crop seedlings. From these position estimates, a very accurate map of crop seedlings can be produced and thereby form the basis for very precise weeding in the close-to-crop area.

S29MT21P01

REDUCING HERBICIDE USE THROUGH INTEGRATED FOREST VEGETATION MANAGEMENT PRACTICES

K Little1, P Adams2, H Froseth1, J. Gove3, S Gous4, R A Lautenschlagera8, G Ortander5, K V Sankaran5, R G Wagner5, Run-Peng Wei6, I Willoughby1

1Institute for Commercial Forestry Research, PO Box 102081, Scottsville, South Africa 3209, E-mail: keith@icfr.unp.ac.za; 2Forest Tasmania, 196 Mehlville Street, Hobart, Tasmania, 7000, E-mail: paul.adams@forestrytas.com.au; 3Labor, UMR INRA-ENRGEF, Equipe Coherence et Production, CR INRA de Nancy 54280 Champenoux, France, E-mail: flochot@nancy.inra.fr; 4Cia.Suzano de Papel e Celulose, Tavares, Km 169, Cx Postal 228, CEP 18.200-000, Itapeininga - SP, E-mail: igave@suzano.com.br; 5Forest Health and Protection, Forest Research, Private Bag 2030, Rotorua, New Zealand, E-mail: stefan.gous@forestresearch.co.nz; 6Atlanta Canada Conservation Data Centre, PO Box 6416, Sackville, NB E4L 1G6, E-mail:ralautenschlager@ess.slu.se; 7Kerast Forest Research Institute, Pechehi-680 653, Kerast, India, E-mail: sankaran@kfr.in; 8University of Maine, 5755 Nutting Hall, Orono, Maine, USA, 04469, E-mail: bob_wagner@umes.maine.edu; 9Sino-Forest Corporation, 3129-40, 31/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong, E-mail: runpeng-wei@sinoforest.com; 10Forestry Research Agency, Alice Holt Lodge, Farnham, Surrey GU10 4LH, United Kingdom, ian.willoughby@forestry.gsi.gov.uk

Mechanical, manual, thermal, biological and chemical weed control methods have, to a large extent, been developed independently. The effectiveness and relatively low cost of herbicides has resulted in management systems which are reliant upon their continued availability, and has led to the almost total exclusion of non-herbical methods of weed control. Greater public awareness, perceptions of risk, and resulting pressures exerted by some forest certification systems, have increased the need to develop alternative methods and to reduce dependence on herbicide technology alone. In response, forest vegetation management research has been widened in recent years to include alternatives to herbicides, along with initiatives aimed at reducing present herbicide use. A review of current progress indicates that reduced herbicide use can, in theory, be achieved. There are however, a number of commercial, economic and social issues associated with the practical application of this knowledge, notwithstanding the fact that a more integrated approach is required to combine relevant methods of vegetation management. This paper, together with appropriate examples, highlights past and current research to develop alternatives to herbicides, as well as identifying instances of the successful or unsuccessful implementation of this technology.

S31MT7P01

HERBICIDE TOLERANT CROPS IN SOUTH AMERICA IN THE PRESENT AND PREDICTIVE STATEMENTS FOR THE FUTURE AGRONOMIC ASPECTS

P J CHRISTOFFOFLEITI, P A MONQUERO6 and R F LOPES-OVEJERO1

1Universidade de São Paulo – ESALQ/USP – Brazil – pichrist@esalq.usp.br

Despite the fact that Brazil is one of the world leaders in soybean production, with more than 19 million ha, there is only 3.0 million ha of herbicide tolerant (HT) soybean. The National Commission of Biosafety has released a report in 2003 that planting HT soybean to glyphosate do not cause any risk to environment and health and that HT soybean to glyphosate could be planted in the country, as long as, monitoring of the environmental impact must be done during for five years. Several advantages are pointed out in the present and in the future as consequence of planting HT crops, that include increase in the crop yield, more efficient use of pesticides, among others, even tough several of them are predictive statements to be confirmed. In the same way some negative predictive statement for the future could be done considering agronomic aspects, which include weed shifts to weeds that are hard to kill by the herbicide and herbicide resistant weeds. Several hard to kill weeds by glyphosate in Brazil and Argentina has been selected during the last years, specially in areas of no till systems. Biotypes resistant to glyphosate of Lolium multiflorum are also present in Brazil in the southern region. The prediction for the future is that this weed shift and selection of resistant biotypes are going to continue in the future and for this reason it will need other herbicides to control these hard to kill weeds and resistant biotypes.

1Southern Research Station, USDA Forest Service, 520 DeVall Drive, Auburn, AL USA 36849, michael@auburn.edu; 2Cemagref, French Institute of Agricultural and Environmental Engineering Research, Domaines des Barres, 45290 Nogent-sur-Serein, France, yann.dumas@forets.cemagref.fr; 3Forest Health and Protection, Forest Research, Private Bag 2030, Rotorua, New Zealand, stefan.gous@forestresearch.co.nz; 4Finnish Forest Research Institute, Box 44, FIN-21501 Lahti, Finland, gert.virtanen@metsa.fi; 5Re-establishment Research Institute for Commercial Forestry Research, PO Box 100281, Scottsville, South Africa 3209, Keith@icfr.unp.ac.za; 6Southern Swedish Forest Research Centre, Box 49, 210 53 Almora, Sweden, urban.nilsson@ess.slu.se; 7Embrapa Environment, C.P. 69 - Jaguariuna, SP 13820-000 Brazil, spachoit@icmpa.embrapa.br; 8NRCan-Canadian Forest Service, 1219 Queen E West, Saskatoon, SK S7N 2K1, Canada, svend.christensen@agrsci.dk; 9Institute for Commercial Forestry Research, PO Box 100281, Scottsville, South Africa 3209, E-mail: keith@icfr.unp.ac.za; 2Forestry Tasmania, 196 Mehlville Street, Hobart, Tasmania, 7000, E-mail: paul.adams@forestrytas.com.au; 3Labor, UMR INRA-ENRGEF, Equipe Coherence et Production, CR INRA de Nancy 54280 Champenoux, France, E-mail: flochot@nancy.inra.fr; 4Cia.Suzano de Papel e Celulose, Tavares, Km 169, Cx Postal 228, CEP 18.200-000, Itapeininga - SP, E-mail: igave@suzano.com.br; 5Forest Health and Protection, Forest Research, Private Bag 2030, Rotorua, New Zealand, E-mail: stefan.gous@forestresearch.co.nz; 6Atlanta Canada Conservation Data Centre, PO Box 6416, Sackville, NB E4L 1G6, E-mail:ralautenschlager@ess.slu.se; 7Kerast Forest Research Institute, Pechehi-680 653, Kerast, India, E-mail: sankaran@kfr.in; 8University of Maine, 5755 Nutting Hall, Orono, Maine, USA, 04469, E-mail: bob_wagner@umes.maine.edu; 9Sino-Forest Corporation, 3129-40, 31/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong, E-mail: runpeng-wei@sinoforest.com; 10Forestry Research Agency, Alice Holt Lodge, Farnham, Surrey GU10 4LH, United Kingdom, ian.willoughby@forestry.gsi.gov.uk

Globally, land management activities can significantly alter ecosystem components on temporal and spatial scales. Alterations in wildlife habitat and potentially adverse impacts on soils and aquatic ecosystems are notable social concerns in the field of forest vegetation management (FVM). However studies have shown that FVM which usually occurs 1-3 times over a forest rotation period may represent a minor impact compared to those resulting from population growth, forest harvest, or to agricultural activities which occur several times annually. FVM activities include plant protection, non-forest, and hard wood harvesting, thinning, and semi-natural areas and improvement of recreational areas and wildlife habitat. FVM may be accomplished using a variety of tools including mechanical, manual, chemical, biological, and silvicultural methods. Among these tools, chemical herbicides combined with various silvicultural methods are often the preferred approach to FVM because they are the most cost efficient, reliable and effective means available. Herbicides may be spot applied, injected into single stems, applied in discreet bands, or broadcast applied either by aerial or ground-based equipment. More than 30 forest herbicide active ingredients are registered for use in various countries for FVM. The registration process usually includes exhaustive toxicological, environmental impact and environmental fate studies. Fewer than 10 of these active ingredients represent more than 85% of the total amount of forest herbicide applied worldwide. This paper will review the evidence from publications that contrary to popular opinion, there is little potential for long-term detrimental impacts on soil and water resources.
T A Brimmer¹, G J Gallivan¹ and G R Stephenson²

¹Department of Botany, University of Guelph, Guelph, ON, tbrimmer@uoguelph.ca; ²Consultant, Ottawa, ON, ggallivan@sympatico.ca; ³Department of Environmental Biology, University of Guelph, Guelph, ON, gerry.stephenson@rogers.com

Between 1996, when herbicide-resistant (HR) canola was introduced, and 2000, the amount of HR canola grown in Canada increased from 10% of the total area of canola grown to 80%. Due to HR technology, the major types of herbicides used by growers have changed, ultimately affecting the amount and environmental impact of the active ingredient applied. Herbicide use data and the areas of conventional and HR canola grown were examined from 1995 to 2000 to determine the amount of herbicide applied. The Environmental Impact (EI) per hectare of herbicide use was calculated for conventional and HR canola using the Environmental Impact Quotient and the amount of active ingredient applied. From 1995 to 2000, the amount of active ingredient applied per hectare of canola declined by 42.8% and the EI per hectare declined 36.8%. The amount of active ingredient per hectare applied to conventional canola was consistently higher than that applied to HR canola between 1996 and 2000. Similarly, the EI of herbicide use per hectare in conventional canola was higher than that of HR canola during the same time period. Since 1996, herbicide use has shifted from broad-spectrum applications of soil-active herbicides to post-emergence applications of herbicides with broad-spectrum activity. The decline in herbicide use and EI since the introduction of HR varieties was likely due to increased use of chemicals with lower application rates, a reduced number of applications and a decreased need for herbicide combinations.

S31MT7P03
TOLERANCE OF SUGARBEET TO CHLORIMURON-ETHYL
Tao Bo¹, Ding wei¹ and Luan feng xia²
¹Northeast Agriculture University Agronomy College Harbin 150030 botao@163.com, ²Heilongjiang Entry _Exit Inspection and Quarantine Bureau Harbin 150001

Sugarbeet is very susceptible to Chlorimuron-ethyl residue with inhibition of normal growth. This paper presented the research on the tolerance of sugarbeet to Chlorimuron-ethyl residue. A hundred and six line of sugar beet were selected on tolerance to Chlorimuron-ethyl reside in green house. Significant difference exited in the tolerance of different variety sugar beet when tested with concentration 0.1 μg/kg of Chlorimuron-ethyl residue. Six line of sugar beet expressed high tolerance to Chlorimuron-ethyl, rate of germination of sugar beet was 100%, but only one line(NE02-1) was fine growth. Rate of germination of four line was 50%, their growth was inhibited, other lines was very susceptible did not germinate with concentration 1 μg/kg of Chlorimuron-ethyl residue. When dosage of Chlorimuron-ethyl with 7.5g ai/hm² was applied in post germination, tolerant line(NE02-1) of sugar beet growth fine, other lines was gradually damp off and died. There were obvious different physiological action among tolerant line, middle tolerant line and susceptible line with concentration 0-5 μg/kg to Chlorimuron-ethyl residue. When concentration of chlorimuron-ethyl residue was increased, root vitality of tolerant line(NE02-1) was decreased little, but other lines were obvious decreased. When dosage of Chlorimuron-ethyl with 7.5g ai/hm² was applied in post germination, chlorophyll contain of tolerant line(NE02-1) of sugar beet was decreased in initial stage, after 10 day recovered normal. Chlorophyll contain of middle and susceptible line of sugar beet were decreased obvious, sugar beet's leaf was withered, and died at end.

Key words: Sugar beet, Chlorimuron-ethyl residue, Tolerance, Susceptible

S31MT7P04
EFFECTS OF GLYPHOSATE ON SYMBIOTIC NITROGEN FIXATION/NITROGEN ASSIMILATION AND YIELD IN GLYPHOSATE-RESISTANT SOYBEAN
R.M. Zablotowicz¹ and K.N. Reddy¹

¹USDA-ARS, Southern Weed Science Research Unit, P.O. Box 350, Stoneville, Mississippi 38776, E-mail rzablotowicz@ars.usda.gov; kreddy@ars.usda.gov

Glyphosate-resistant (GR) soybean has revolutionized weed control in soybean production. The effects of glyphosate on nitrogen fixation, nitrogen assimilation, and yield of GR soybean under weed-free conditions were determined in a two-year field study. Four glyphosate (0.84, 1.68, 2.52 + 2.52 and 0.84 + 0.84 kg ae/ha) treatments applied at 4 and 6 weeks after planting (WAP) were compared to no glyphosate (weed-free) control. Soybean plants were harvested between 4 and 8 WAP, and roots assessed for nitrogenase activity (acetylene reduction assay,ARA), respiration and nodulation, and foliar nitrogen content. Soybean seed yield and seed nitrogen content were determined. No consistent effect of glyphosate was observed on either ARA or root respiration. In 2002, both ARA and respiration were about a third of that in 2003, attributed to drought in 2002. All glyphosate treatments reduced foliar nitrogen content (26 to 42%) in 2002, and three glyphosate treatments reduced foliar nitrogen content (9 to 14%) in 2003, with the greatest reduction when glyphosate was applied at the highest rate. Soybean yield compared to nontreated soybean was reduced by 32 and 17% compared to nontreated soybean respectively, when 2.52 kg ae/ha glyphosate was applied in 2002 and 2003. These studies indicate that nitrogen fixation and/or assimilation in GR soybean was consistently reduced at high rates of glyphosate and the greatest reductions occurred with soil moisture stress following glyphosate application.

S31MT7P05
GLYPHOSATE-INDUCED MALE STERILITY IN RR COTTON IS ASSOCIATED WITH CHANGES IN MICROTUBULES ORGANIZATION IN ANther ENDOTHECIUM CELLS
H Yasuor¹, M Abu-Abied², E Sadot², J Rivo¹ and B Rubin¹.

¹R H Smith institute of Plant Science, & Genetics in Agriculture, Faculty of Agricultural, Food & Environmental Sciences, Hebrew University of Jerusalem, Israel, yasuor@agri.huji.ac.il; ²Department of Ornamental Horticulture, ARS, Volcani Center, Bet-Dagan, Israel

Glyphosate (1.44 kg ae/ha) applied at the reproductive stages to glyphosate-resistant (RR®) cotton (DP5415RR) resulted in a temperature-dependent male sterility. This male sterility is associated with changes in the organization of the secondary cell wall thickenings (CWT) in the endothecium layer of the anther. The orientation of the CWT was changed from a longitudinal to a transverse position, preventing the formation of the “U shape” CWT, which normally allow anther dehiscence. Using immunofluorescent staining with monoclonal antibodies against α-tubulin, we observed that the orientation of the microtubules was also changed from a longitudinal to a transverse position. Confocal microscopy showed that the changes in the microtubule position overlapped the changes observed in the endothecium CWT. In order to further study the possible involvement of glyphosate in microtubule organization, Arabidopsis thaliana seedlings expressing GFP-tubulin (TU18) were exposed to glyphosate (10 mM). Cortical microtubules in the epidermal cells of the hypocotyl were examined 18 h after treatment using a confocal microscope. The orientation of the microtubules in untreated Arabidopsis control plants was longitudinal (normal), whereas in glyphosate-treated plants the orientation was transverse. In addition, Arabidopsis treated plants accumulated high concentrations of shikimic acid (>2mg g⁻¹ fresh weight), demonstrating a specific effect of glyphosate. These results suggest that male sterility induced by glyphosate in RR cotton is associated with changes in microtubules orientation leading to CWT modifications.
M-75-15 can be used as an important criterion for determination of mixed stand. Results indicated that CI was a suitable index for competitive index (CI), weed biomass and grain yield in pure and 6618 and M-75-5 were as MC and LC, respectively using.

The results of complementary experiment indicated that lines (Goldbachia laviegata, Avena ludoviciana and weed free control). Treatments included six wheat genotypes at three weedy levels experiment was conducted as a RCBD with four replications.

laviegata were selected to be the dominant broad- and narrow-leaf competitive (MC) and Alamoot, Ghafghaz and M-75-5 were less genotypes 6618, M-75-13, M-75-15 were selected as more.

The results of preliminary experiment showed that wheat variety Bakhtawar-92 had maximum grain yield (5% & 10%), straw yield (5% & 10%), harvest index, benefit cost ratio (6% & 13%) over 25 and 32 cm row spacing. Varieties, herbicides, row spacing, varieties x herbicides, varieties x row spacing and herbicides x row spacing significantly affected weed density, grain yield, harvest index, net income (8% and 23%), and benefit cost ratio. Broad-spectrum, broadleaf and grassy herbicides and weedy check, respectively. Within row spacing, 18 cm space had maximum grain yield (5% & 10%), straw yield (5% & 10%), harvest index (1% and 3%), net income (10% and 22%) and net benefit cost ratio (6% and 13%) over 25 and 32 cm row spacing, respectively. Variety Bakhtawar-92 with broad-spectrum herbicide in 18 cm row spacings surpassed in grain yield, harvest index and net income.

In order to study the competitive ability of winter wheat cultivars against weeds, a three year trail was conducted as preliminary (1999) and complementary (2000-2001) experiments at weed research station of Plant Pest and Disease Research Institute in Karaj. The preliminary experiment was carried out in randomized complete block design (RCBD) with four replications with a factorial arrangement of treatments. Treatments included twelve genotypes of wheat at two levels (weedy or weed free).

The results of preliminary experiment showed that wheat genotypes 6618, M-75-13, M-75-15 were selected as more competitive (MC) and Alamoot, Ghaflahaz and M-75-5 were less competitive (LC) genotypes. Avena ludoviciana and Goldbachia laviagata were selected to be the dominant broad- and narrow-leaf weeds in the complementary experiment. The complementary experiment was conducted as a RCBD with four replications. Treatments included six wheat genotypes at three weedy levels (Goldbachia laviagata, Avena ludoviciana and weed free control). The results of complementary experiment indicated that lines 6618 and M-75-5 were as MC and LC, respectively using competitive index (CI), weed biomass and grain yield in pure and mixed stand. Results indicated that CI was a suitable index for determination of MC from LC wheat cultivars. The comparison of morphological and physiological characteristics of lines 6618 and M-75-15 can be used as an important criterion for determination of competitive ability of wheat against weeds in breeding programs.
S31MT10P04

INFLUENCE OF WEED INTERFERENCE ON WHEAT (TRITICUM AESTIVUM L.) YIELD, NITROGEN USE EFFICIENCY AND GRAIN PROTEIN CONTENT

Saeid Soufizadeh 1 and Escandar Zand 2

1-Department of Agronomy and Plant Breeding, Abooreihan Campus, University of Tehran, P. O. Box 11365/4117, Tehran 39754, Iran. ssoufizadeh2004@yahoo.com.
2-Weed Section, Plant Pest and Disease Research Institute, P. O. Box 1454, Tehran 19395, Iran. es.zand@yahoo.com.

The competitive relationship between plant species is highly dependent on many factors including crop species and the efficiency of crop in utility of available Nitrogen. So, in order to study the competitive ability of different old and modern wheat cultivars and determining their yield and Nitrogen Use Efficiency (NUE) under competitive condition, a field experiment was conducted in 2002, at the research field of Pest and Disease Research Institute using a factorial arrangement of treatments in a randomized complete block design with three replications. One of the treatments was wheat cultivars (Triticum aestivum L.) in 6 levels and the other one was weed treatment which had 2 levels (weedy and weed free). The weed species was wild oat (Avena fatua L.). Results indicated that modern cultivars had a significant superiority to old cultivars in most of the characteristic studied such as biomass and grain yields, NUE, Nitrogen Harvest Index (NHI) and Grain Harvest Index (HI), in both presence and absence of wild oat. But the grain protein content of old cultivars were higher than modern cultivars. Moreover, competition with wild oat decreased all the studied characteristics significantly except NHI. Among the studied cultivars the modern cultivar ‘Qods’ and the old cultivar ‘Omíd’ had the most and the least amounts of grain yield, NUE, Nitrogen Utility Efficiency (NUT.E), NHI and HI, respectively.

Key words: Corn, weed and nitrogen

S31MT10P05

EFFECT OF PLANTING TECHNIQUE ON WHEAT DYNAMICS IN RICE (ORYZA SATIVA)-WHEAT (TRITICUM AESTIVUM) CROPPING SYSTEM IN WEST BENGAL, INDIA

R.C. Samui 1, subhendu Mandal 2, Anirban Mondal 3 and Debantu Dash 4

Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN-741252, West Bengal , India.

The present investigation was conducted at the University farm of BCKV during 2000, 2001 and 2002 in Randomized Block Design with four replications to study the effect planting techniques on weed dynamics in rice-wheat cropping system. The treatments consists with three cropping systems (Rice-Wheat, Rice-Rapeseed and Rice-Groundnut) and three planting techniques [flat bed, Broad bed (45cm) and furrow 22.5cm] and inter cropping.). In flat bed wheat and rapeseed were sown in 22.5cm apart and groundnut 45 cm apart. In broad bed and furrow (BBF) method three rows of wheat and rapeseed and two rows of groundnut were sown in bed. In BBF inter cropping system in between two rows of groundnut one row of wheat or rapeseed was sown. The major weeds found in rainy season rice were Echinocloa colonum, Echinocloa crus-galli, Cyperus sp. Panicum sp, Marsilila quadrifoliata, and in winter season were Chenopodium album,Melilotus indica,Cichorion intybus, Circium arverse . Higher rice equivalent yield was obtained in rice-groundnut+ wheat (2:1) followed by rice- groundnut+ mustard (2:1) system. BBF method of planting recorded significantly lower weed population and weed dry weight. Nutrient uptake by weed also follow similar trend.

S31MT10P06

MANIPULATING CORN COMPETITIVENESS WITH WEEDS THROUGH RATE AND METHOD OF NITROGEN APPLICATION

M. Faravani 1, M. Bazooandi 1, M. Hadizadeh 2 and M. Akhavan 1

1-Khurasan Agricultural Research Center
P.O.Box :91735-488 – Mashhad- Iran
2-Weed Research Department of Plant, Pest and Diseases Research Institute
Email :faravani@yahoo.com

Nitrogen is the major nutrient which crops and weeds compete for it. Since weeds are usually are more successful in this regard, therefore a proper fertilizing program such as splitting nitrogen over growing season could promote crop ability in competition. The present investigation was conducted at the possibility of increasing such abilities in corn. The experiment was carried out at the farm of Khurasan Agricultural Research Center in Mashhad during growing season of 2003. It was laid out in a randomized complete design with three factors in a split plot design. Method of nitrogen application in main plot (strip and broadcasted) while rate of nitrogen fertilizer and level of control as factorial combinations in sub-plots. Urea (46%) was applied as source of nitrogen . Weeds were sampled species-wise in two different stages. Number and dry matter of them as well as crop data seed, biological yield and yield components registered . Results revealed that rate and method of nitrogen application could not significantly affect seed and biological yield . Broadcasting urea significantly increased lamb quarters dry weight while no significant difference were observed in case of pig weed and common purslane number and dry weight . Same results were detected regarding rate of nitrogen. Such results is due to more nitrophilic nature of lamb quarters compare to pig weed . It may be conclude that none of rate and method of nitrogen application could change the the competition on favor of corn , due to nitrophilic nature of weeds under study.

Key words: Corn, weed and nitrogen

S31MT10P07

IMPACTS OF WEEDS AND WEEDING REGIMES ON MAIZE FORAGE YIELDS AND QUALITY FOR RESOURCE POOR MAIZE-Dairy Farmers in Central Kenya.

A J Murdoch 1, J M Maina 2, B M Kivuva 3, M W K Mburu 3, M Njunga 3 and D M Mwangi 4

1Department of Agriculture, The University of Reading, P O Box 237, Earley Gate, Reading RG6 6AR, UK, Email: a.j.murdoch@reading.ac.uk
2Kenya Agricultural Research Institute, National Agricultural Research Laboratories, P O Box 14733, Nairobi, Kenya, Email: jedidiahmaina@yahoo.com
3Department of Crop Science, University of Nairobi, P O Box 30197, Nairobi, Kenya
4Kenya Agricultural Research Institute, National Agricultural Research Centre, Muguga, P O Box 30148, Nairobi, Kenya

A survey of maize-dairy farmers in the Central Kenyan Highlands showed that thinnings, green stover, dry stover and weeds from the maize crop respectively comprised 6%, 10%, 8% and 5% of the total forage. Nevertheless, most weed research of maize completely ignores the use of maize crop residues as forage. The value of weeds from the maize crop is similarly ignored in assessing the costs and benefits of weed control. The effects of maize weeding regimes on maize forage and grain yields were therefore evaluated over three growing seasons in a bimodal rainfall area (Kiambu). Weeding regimes were weed free (W1), weedy (W2), pre-emergence herbicide (W3) and hand weeding twice (W4). Edible weeds had a dry matter digestibility of 65% and 20% crude protein (CP) – higher than in the maize stover (62 and 4%, respectively). The weedy regime (W2) reduced maize forage quality; the CP was lower in maize stover and thinnings. Although weeds provided a measurable source of forage for resource poor farmers, they directly reduced grain yields and the quality and quantity of maize forage. Long-term costs and benefits were also evaluated. During the third season (short rains 2002/3), effects of applying the weeding regimes for the two previous seasons were quantified by weed emergence and hand weeding times. The weedy regime (W2) needed 81 man-days ha-1 for weeding, significantly more than W1, W3 and W4 (67, 63 and 63 man-days ha-1, respectively). Failure to control weeds thus meant that more labour was needed to hand-weed subsequent crops.
S31MT15P01

Understanding key developmental processes in parasitic weeds

G Ejeta and P. J. Rich

Purdue University, Department of Agronomy, 915 W. State St., West Lafayette, IN 47907-2054, gejeta@purdue.edu

Research on the biology of parasitic weeds has been underway for several decades. Recent advances in the various disciplines applied to the study of parasitic weeds have greatly expanded our knowledge base. Evidences drawn from these studies have allowed us to develop a growing understanding of the biological processes by which these unique plants grow and develop in coordination with their hosts. Generally, parasitic weed seeds have specific dormancy and environmental conditioning requirements that must be met before they germinate. Germination of weed seeds proceeds in response to signals derived from host plants. Differentiation of radicle cells into the haustorium marks the beginning of the parasitic phase of the weed's life cycle. The biological and chemical aspects of haustorial initiation have evolved to require assurance of proximity to the host with this transition. Post-attachment haustorial development allows the parasite to establish vital vascular connections as well as metabolic and osmotic linkage with the host plant. Finally, the weed matures and sets seed completing the life cycle and bringing the process full circle. This paper focuses on the shared biology of root parasites, with examples drawn mainly from *Striga* and *Orobanche spp.* We present a review of our current knowledge of the biology of parasitic weeds to offer perspectives on developmental processes in plants as well as opportunities for genetic manipulation in host plant resistance.

S31MT15P02

MANIPULATING HOST DEFENSES TO ENHANCE TOBACCO RESISTANCE TO OROBANCHE AEGYPTIACA

E M Winston, O P Hurtado-Gonzales, C L Cramer, and J H Westwood

Virginia Tech, Department of Plant Pathology, Physiology, and Weed Science, Blacksburg, VA 24061, westwood@vt.edu

An intriguing question for parasitic weed control is whether a normally susceptible host plant contains the potential to defend itself from parasitism, but somehow fails to activate the most effective response. Previous research has indicated that *Orobanche* parasitism triggers its host to activate some defense responses more than others. Specifically, *Orobanche* induces defenses associated with the localized production of phytoalexins much more than those associated with salicylic acid (SA) signaling, pathogenesis-related (PR) proteins, and systemic acquired resistance. To better understand the potential for enhancing host resistance, we have tested strategies for inducing those defenses that are not normally activated by the parasite. One strategy was to engineer a parasite-triggered hypersensitive response (HR) in tobacco by expressing the TMV replicase gene under control of the *Orobanche*-inducible CHS8 promoter. Expression of the replicase protein in plants containing the N gene leads to a gene-for-gene interaction that causes HR in leaves. When these hyper-responsive transgenic tobacco were challenged with *O. aegyptiaca*, parasitism was reduced to less than half that of wild-type plants. In addition, we have studied the levels of tobacco PR-1a protein in response to the SA analog, BTH. Treatment of plants with this compound greatly induced PR-1a production in leaves, but little in roots. Treatment of plants with BTH to stimulate SA-mediated defenses did not consistently enhance resistance to *O. aegyptiaca*. These studies suggest that host resistance capacity can be increased in susceptible hosts, but caution that the defense capabilities of plant roots differ significantly from those of leaves.

S31MT15P03

EPSP-SYNTHASE PRESENCE AND ACTIVITY IN BROOMRAPE (OROBRANCHE AEGYPTIACA PERS.)

Lilach Zygier and Baruch Rubin

R. H. Smith Institute of Plant sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel (rahamim@agri.huji.ac.il)

Glyphosate inhibits the biosynthesis of aromatic amino acids by inhibition of EPSP synthase, a key enzyme in the shikimate pathway, resulting in accumulation of shikimic acid in sensitive plants. The aims of this study were to examine if the Egyptian broomrape (*Orobanche aegyptiaca Pers.*), has an active EPSP synthase and its response to glyphosate. ¹⁴C-glyphosate applied to the second leaf of transgenic glyphosate-resistant (R) and – sensitive (S) tomato (*Lycopersicon esculentum*) is rapidly translocated to various host sinks (apex and roots) and to broomrape tubercles developing on the tomato roots. Broomrape tubercles accumulated more ¹⁴C-glyphosate than the apical meristem and roots of the host, indicating that broomrape is a strong sink. Glyphosate applied to the foliage of R and S tomato plants inoculated with Egyptian broomrape resulted in severe damage to the parasite. In addition, shikimate was accumulated in the apex and roots of the S plants but not in the R plants. Broomrape tubercles parasitizing both R and S tomato accumulated high levels of shikimate. The accumulation of shikimic acid in the tubercles growing on the resistant host confirms that there is an active EPSP synthase in broomrape. These results suggest that the parasite confers the capacity to synthesize aromatic amino acids independently of the host plant, raising the question why does the broomrape need this enzyme if assimilates and amino acids are supplied by the host.

S31MT15P04

DETERMINATION AND QUANTIFICATION OF STRIGOLACTONES

K Yoneyama¹, Y Takeuchi¹, D Sato¹, H Sekimoto² and T Yokoka³

¹Center for Research on Wild Plants, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan, yoneyama@cc.utsunomiya-u.ac.jp, takeuchi@cc.utsunomiya-u.ac.jp; ²Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan, hitoshi@cc.utsunomiya-u.ac.jp; ³Department of Biosciences, Teikyo University, 1-1-1 Toyosatodai, Utsunomiya 320-8501, Japan, yokoka@nasubio.teikyo-u.ac.jp

Seed germination of root parasitic weeds *Striga* and *Orobanche* is strongly elicited by strigolactones such as strigol, sorgolactone, electrol, and orobanchol. Trace amounts of these known strigolactones in root exudates can be analysed by using the high performance liquid chromatography (HPLC)-connected to tandem mass spectrometry (LC/MS/MS). So far, orobanchol produced by red clover, and strigol and strigyl acetate produced by cotton have been quantified. In both cases, young and actively growing roots were found to be major source of germination stimulants. Distributions of germination stimulation activity after reverse-phase HPLC purification of ethyl acetate extracts of root exudates indicate that there are several strigolactones whose structures are yet to be elucidated. For example, sorghum was found to produce a novel strigol isomer as well as sorgolactone and strigol. At least 4 novel strigolactones, 1 dehydro- and 3 tetrahydro-strigol isomers, were detected in tomato root exudates. These results clearly demonstrate a wide distribution of strigolactones in the plant kingdom, indicating that strigolactones may have some important biological functions in plants.
S31MT15P05
ENHANCING THE EFFICACY OF A FUNGAL BIOCONTROL
AGENT AGAINST OROBANCHE CUMANA THROUGH
COMBINATION WITH A RESISTANCE-INDUCING CHEMICAL
D Müller-Stöver, H Buschmann and J Sauerborn

Institute for Plant Production and Agroecology in the Tropics
and Subtropics, University of Hohenheim, 70593 Stuttgart,
Germany, e-mail: stoever@uni-hohenheim.de

Fusarium oxysporum Schlecht. f. sp. orthoceras (Appel &
Wollenw.) Bilai was found to attack all developmental stages of
the parasitic weed Orobanche cumana Wallr. Fungal propagules
were matrix-incorporated in granules made from wheat-flour and
kaolin (‘Pesta’) that efficiently controlled the parasitic weed in
greenhouse experiments. However, in a field trial carried out in
Israel, control efficacy was lower compared to the pot experiments
and the soil population of the fungus decreased to less than 10 %
of the initial numbers within two months. Thus, the most important
objective of the present investigations is enhancing the efficacy of
the biocontrol agent. In pot experiments with different sunflower
cultivars, the application of F. oxysporum was combined with a
treatment of Benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl
ester (BTH) that is known to induce resistance against O. cumana
in sunflower. The combined treatments always performed best
regarding the control of O. cumana and resulted in a reduction of
emergence of up to 100 %. In first laboratory experiments,
virulence and growth of the fungus was generally not affected by
the addition of BTH to the growth medium, except for a short time
after incubation or after the incorporation of high dosages of BTH
(30 or 90 ppm) when the growth of the fungus was reduced
compared to the untreated controls. Results are presented on how
to optimise the integration of the two control measures.

S31MT15P06
MANURE FERMENTATION REDUCES OROBANCHE INFESTATION ON TOMATO
BE Abu-irmaileh1 and AM Abu-Rayyan2

University of Jordan- Faculty of Agriculture, 1 Department of Plant
Protection, 2 Department of Horticulture and Field Crops
Barakat@agrju.edu.jo

Controlling Orobanche species in many crops has been continuing
for the past decades with only limited success. Fumigants such as
methyl bromide, and herbicides are the only direct control
practices. However, their application requires specific technology
that is beyond the capability and affordability of subsistent
farmers in small farming systems. In addition, chemicals are not
totally safe to the environment. In this research, fermenting
Orobanche-contaminated manure for a period of six weeks
reduced the ability of Orobanche seeds to infest tomato, as
Orobanche dry weights and the total number of shoots and
attachments were reduced. Air-tight covering of the soil surface
of plots amended with manure for fermentation by black polyethylene
sheets for six weeks reduced the ability of Orobanche seeds,
which were buried at 15-20 cm depth, to infest tomato. All species
of Orobanche; O ramosa, O. cernua, or O. crenata responded
similarly to manure fermentation. Fermentation of poultry manure
was more effective than cow and sheep manures. Fermenting
manure in the planting row for six weeks prior to planting
was effective in reducing Orobanche ramosa, on tomato plants.
Fermentation of manure could offer a new environmentally safe
procedure to manage Orobanche, using farm resources and
could improve the sustainability of crop management. It would
also be an effective asset in organic farming.

S31MT15P07
EVALUATING STRATEGIES TO CONTROL THE PARASITIC
WEED OROBANCHE CRENATA IN FABA BEAN – A
SIMULATION STUDY USING APSIM
J H Grenz1, A M Manschadi2 and J Sauerborn1

1 Institute of Plant Production and Agroecology in the Tropics
and Subtropics, University of Hohenheim, Stuttgart, Germany,
jan.grenz@gmx.de; 2 Agricultural Production Systems Research
Unit, DPI, Toowoomba, Australia,
ahmad.manschadi@dpi.qld.gov.au

The angiosperm parasite Orobanche crenata inflicts considerable
damage upon legume production in Mediterranean countries. No
single control method has proven both effective and practicable
due to the complexity of host-parasite interactions. Experimental
evaluation of potential integrated control strategies would be time-
and labour-consuming, yet only render location-specific results.
The use of simulation models can help overcome these
restrictions. The objective of our work is to provide a model that
can be a useful tool in assessing the impacts of control options
and strategies against parasitic weeds.

This study reports on the development, evaluation and application
of a generic module within the framework of the Agricultural
Production Systems Simulator (APSIM) that allows quantification
of parasitic weed impact. A mechanistic model of host-parasite
interactions was calibrated with experimental data on the
association faba bean-O. crenata from Syria and evaluated
with independent data from Turkey. The evaluation showed that
APSIM can realistically reproduce observed courses of growth
and development of host and parasite. In order to facilitate long-
term simulations, algorithms calculating seed bank dynamics and
effects of control measures were added. The enhanced model
was used with historic weather data to simulate effects of various
sowing strategies and weeding schedules on faba bean yield and
O. crenata seedbank. The results demonstrate that APSIM can
provide the quantitative information needed to identify effective
control strategies. The generic nature of the model means that it
can be easily adapted to suit other host-parasite associations.

S31MT16P01
ORGANIC WEED MANAGEMENT: A REVIEW OF THE
CURRENT UK FARMER PERSPECTIVE
R J Turner1, G Davies1 and A C Grundy2
1 HDRA, Coventry, CV23 9SS, UK, btumer@hdra.org.uk; 2 HRI,
Wellesbourne, Warwick, CV35 9EF, andrea.grundy@hri.ac.uk

This paper will report on a UK government (DEFRA) funded
project taking a participatory approach to organic weed
management. Farmers have set the research agenda deciding that
the project will focus on perennial weeds, systems
approaches to weed management and knowledge collation and
dissemination. Farmers who have attended stakeholder days and
focus groups meetings believe other farmers may hold the key to
managing weeds and would like help gathering and sharing that
practical knowledge. They also feel there is poor dissemination of
research trial results. The project is taking several approaches to
address these issues, a review of published and ‘grey’ literature
relating to individual weeds and weed management is being
compiled. Farmer case studies and monitoring of existing farm
practice are on going and simple weed management trials have
been devised for farmers to try. All information is held in the public
domain on a researcher maintained website
www.organicweeds.org.uk. This paper focuses on one method, a
semi-structured survey of organic farmers who volunteered to
provide information about weed management in their system. 52
case studies in England and Wales have been undertaken to date
mainly in mixed systems. The survey covered; characterising
the farm, farmers attitude to weeds and current problems, strategies
for management, successes and failures, how problems have
changed over time, where they get information from and best
sources and what would they like to see research addressing. A
summary of this information will be presented. Further details on
the other project approaches will also be discussed.
S31MT16P02
EFFECTS OF THE IMPLEMENT SETTINGS ON THE MECHANICAL ACTIONS OF A FLEXIBLE SPRING TINE DURING WEED HARRROWING
K. Duerinckx, J. Anthonis & H. Ramon
K.U.Leuven, Labo Landbouwwerktuigkunde; Kasteelpark Arenberg 30; 3001 Heverlee; België
kurt.duerinckx@sgr.kuleuven.ac.be

Understanding of the working mechanisms of the weed harrow at different tine settings is necessary to achieve optimal weed control. Therefore, the mechanical action of the weed harrow tine on the soil and the effects of changing implement settings were studied in two different soil types. Due to the specific requirements of the research, an exceptional experimental set-up and outline were constructed. The experiments were conducted indoors to reduce the influence of external factors and no plants were involved in the experiments in order to avoid variance due to biological differences. A commercially available flexible weed harrow tine was used. The movements of and forces on the tine were measured with strain gauges. After which, these measurements were analyzed firstly as the mean deflection from the tine in the soil, then as the deviations around this mean position and finally as the properties of the vibration frequency during working. In addition, a high-speed camera was used to provide a visible description of the tine penetration into the soil. The implement settings and their interactions with the soil type have important effects on the movements of the tine and its action on the soil. Different settings have different effects on certain response parameters of the tine. This enables to set up the weed harrow to achieve distinct and desired results as more covering, more uprooting or a more equal weeding action. This enables to set up the weed harrow to achieve distinct and desired results as more covering, more uprooting or a more equal weeding action. The mechanisms that act between the tine and the soil are established. This will facilitate further mechanical research.

S31MT16P03
WEED SUPPRESSION USING VETCH (VICIA SATIVA) AS A COVER CROP IN ORGANICALLY GROWN MAIZE
S L Poggio, A Cepeda, A Andriulo
1 Cátedra de Producción Vegetal, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 (C1417DSE) Buenos Aires, Argentina, spoggio@agro.uba.ar; 2 EEA INTA Pergamino, Ruta Provincial 32, Km 4.5, CC 31 (B2700) Pergamino, Argentina, scepeda@pergamino.inta.gov.ar; 3 EEA INTA Pergamino, Ruta Provincial 32, Km 4.5, CC 31 (B2700) Pergamino, Argentina, andriulo@pergamino.gov.ar

The expansion of organic agriculture in the last decades have promoted the reintroduction of leguminous cover crops as a low input strategy for weed and resource management. The effects of different maize cropping systems on weed growth, crop yield, and nitrogen and water use were studied. An experiment was carried out at Pergamino (Argentina), including maize grown with organic (mechanical weed control and vetch cover crop) and conventional management (fertilization and herbicide application), and an unfertilised weedy control. Weed biomass of organic (21.5 g m⁻²) and conventional (29.7 g m⁻²) systems were significantly lower (P<0.05) than in the control (135.2 m⁻²). Consequently, yields of organic (1228 g m⁻²) and conventional (101 g m⁻²) crops were higher than weedy crop yield (756 g m⁻²). Water consumed by maize did not differ among systems, suggesting that was not limiting. More nitrogen was returned as plant residuals in the organic (111 kg ha⁻¹) than in the conventional system (89 kg ha⁻¹), although nitrogen in both grain and total biomass did not differ between both systems. This could be attributed to a greater nitrogen mineralization due to soil disturbance from mechanical weed control, since the low vetch biomass (115 kg ha⁻¹) suggest little N-fixing contribution. Present results remark the importance of leguminous cover crops to manage weeds and to improve resource use efficiency of field crops in low input agricultural systems, which require more research involving ecophysiological and agronomical factors.

S31MT16P04
DIFFERENT MULCHING METHODS FOR WEED CONTROL IN ORGANIC GREEN BEAN AND TOMATO
L. Radics, E. B. Székelyné, P. Pusztaí, K. Horváth
Budapest University of Economic Sciences and Public Administration, Faculty of Horticulture, Department of Ecological and Sustainable Production Systems, lradics@mail.kee.hu, szekelyb@mail.kee.hu, pusztaip@mail.kee.hu, kismany@mail.kee.hu

During our examinations, we have compared the effects of eight methods of mulching on the growth of the weed flora and the crop plants. Crop plants were green bean and tomato. Weedy, hoed and herbicide treated plots, respectively, were used as check plots. Mulching methods were plastic sheet, paper mulch, straw mulch with and without Phylazol-M microbial soil conditioner, compost, and mowing regimes for grass, leguminous and weed mulches. Mulching effects were achieved by assessing soil cover of weeds and crop yield. According to our results, the weed suppressing ability of plastic sheet, paper and straw mulches were similar to effects obtained in the herbicide treated plots, (and sometimes even better). The detailed experiment showed that there are good possibilities for establishing a mulching system that is capable of suppressing weeds, preserving soil structure and moisture, and stimulating biological activity of the soil, which is desirable from both an agronomic and environmental point of view.

S31MT16P05
PRECROP MULCH OF ALLELOPATHIC ACTIVITY FOR WEEDS MANAGEMENT IN ORGANIC WINTER WHEAT PRODUCTION
S.W. Gawronska, W. Bernat and H. Gawronska
Department of Pomology and Basic Natural Sciences in Horticulture, Warsaw Agricultural University, Ul. Nowoursynowska 166, 02-787 Warsaw, Poland, gawronska@alpha.sggw.waw.pl
In organic farming, weed management is very challenging. Precrop cultivation for allelopathically active mulch is considered as an alternative control method. Aim of this 3-year study was to evaluate the effects of sunflower and legumes mulches (alone and in mixtures) on weed infestation and community, winter wheat stand, soil cover, and crop yield in organic winter wheat. Lech and Ogrodowy cultivars of sunflower (best of 44 earlier tested) and field peas, garden peas and common vetch were cultivated as pre-crop for ~3 months, cut and shredded two days before wheat sowing and left on the surface as mulch. Wheat was sown by a disc-seeder (beginning of October). Mulching effectively reduced weed infestation, including elimination of some species, and improved soil structure. In response to mulching, wheat germination was delayed and reduced but yield, depending on year and treatment, was both higher (~30% resulting from productive tillering and lack of weed competition) and lower (30–50% in 2002/03 growing conditions in Poland were harsh). Results that allow distinguishing the effects of seed bed preparation and the physical barrier of mulch from its allelopathic activity will be discussed. The results suggest that allelopathic pre-crop mulching seems to be a promising alternative for weed management in organic farming and improvement in technology will be presented.
WEED MANAGEMENT IN ORGANIC VEGETABLE PRODUCTION

R S Chandran
West Virginia University, Morgantown, WV 26506-6108, U.S.A.
E-mail: RSChandran@mail.wvu.edu

Experiments on weed management methods for organically grown vegetables were conducted in Morgantown, West Virginia, U.S.A. In 2000-2001, straw mulch (5.0, 10.0, and 20.0 cm), black plastic, and hand-cultivation treatments were evaluated in sweet pepper (Capsicum annuum). In 2002, hand-cultivation, plastic mulch, and 10-cm straw mulch were compared to vinegar applied at 4.5, 9.0 and 18% (vol/vol, acetic acid), and corn gluten at 9764, 19,530, and 39,059g/100 m². In 2003, vinegar (6.25 or 12.5%) was applied as directed spray or as broadcast application at early, late, or early + late growth stages of potato (Solanum tuberosum) was evaluated. Plastic mulch increased pepper yields by 50 and 150%, compared to hand-cultivated and mulched (20 cm) plots, and by twenty times compared to control plots. Corn gluten at 39,059g/100 m² reduced weeds by 78% 3 wk after treatment but failed subsequently. Directed spray of vinegar (18%) controlled summer annuals >90% soon after application but weed counts 1 MAT recorded only 20 to 30% reductions compared to control. Potato yield analysis (USDA Grade A, Grade B, and under-sized), indicated no treatment differences for Grade A and under-sized potatoes, however, Grade B potato yields were higher in hand-cultivated plots recorded highest total potato yields, resulting in 63% higher yields compared to control plots. Directed spray of vinegar (12.5%) during early growth stage, or at 6.25% during early + late growth stage resulted in 36% higher tuber yield compared to control plots.

THE DYNAMICS AND MECHANISMS OF CROP TREE COMPETITION BY WOODY AND HERBACEOUS SPECIES

P Balandier1, C Collet2, P E Reynolds3 and S M Zedacker4

1Cemagref, Team of applied Ecology of Woodlands, Clermont-Ferrand Regional Centre, 24 avenue des Landais, BP 50085, F-63172 Aubière Cedex, France, philippe.balandier@cemagref.fr; 2INRA, Laboratoire d'Etude des Ressources Forêt-Bois, UMR INRA-ENGFRE 1092, F-54 280 Champenoux, France, collet@luc.ulpgc.fr; 3NRCan, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, Ontario, P6A 2E5, Canada, preynold@ncrac.gc.ca; 4Department of Forestry (0324), College of Natural Resources, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA, zedaker@vt.edu

Plant interactions can be defined as the ways plants act upon the growth, fitness, survival and reproduction of other plants, largely by modifying their environment. These interactions can be positive (facilitation) or negative (competition or exploitation). During plantation establishment or natural forest regeneration after a disturbance, high light levels and sometimes the increased availability of water and nutrients favor the development of opportunistic, fast-growing herbaceous and woody species. In most climates, this vegetation is favored and captures resources at the expense of crop trees. As a consequence, the growth and survival of crop trees can be dramatically reduced. Although the effects of this competition are well documented, the physical and physiological mechanisms of competition are not. The decreases in the availability of light, water and nutrients and the physiological responses of crop trees to resource depletions and microclimate modification are not well understood. Moreover, the competition process is never in steady state in time or space. The growth response of the crop to different competitors modifies resource availability and allocation. Changes in the intensity and orientation of competition result, and floral composition (relative dominance) can change. In addition, indirect interactions such as changes in predators, insectivores, pathogens and the rhizosphere may have significant impacts and are much less studied. Understanding these dynamics is fundamental to improve vegetation management in forests.

WEED MANAGEMENT METHODS FOR ORGANIC CARROT

L. Radics, I. Gál, P. Pusztai, K. Horváth
Budapest University of Economic Sciences and Public Administration, Faculty of Horticulture, Department of Ecological and Sustainable Production Systems, l.radics@mail.kee.hu, galizora@mail.kee.hu, pusztaip@mail.kee.hu, kismany@mail.kee.hu

Fourteen combinations of mechanical and thermal weed management techniques are compared for weed management in organic carrot. Carrot was chosen for our weed management research because of its difficulties in weed management (long growing period, poor weed tolerance) and because carrot is an important crop in organic farming. Herbicide treatment was used as check – inter-row cultivator, brush weeding, hoeing, hand weeding for mechanical control and flame weeding for thermal control. Weed control effects were obtained by assessing soil cover of weeds and carrot. In 2000 under extremely dry and warm circumstances, herbicide treatment was the most effective treatment. Brush weeding was more effective than the cultivator but both implements gave satisfactorily results when treatments were applied twice. Mechanical weed control reduced cover of therophyte weeds but increased the cover of geophyte weeds. In 2001 under less dry circumstances, the most effective treatment was weeding in rows and inter-row cultivation twice according to the need for control. Brush weeding showed very bad effectiveness even when applied twice. In 2002 at the end of the growing season, the inter-row cultivator and inter-row hoeing twice gave the best results both in terms of weeding effectiveness and improving carrot yield. As an overall conclusion, we can conclude that there is no definite and unfailling method for physical weed management in organic carrot. The major goal for the farmer is to achieve weed management with high competence and accuracy that meets the requirements for control of the given crop. OTKA T 030346 funded this experiment.

THE ROLE OF VEGETATION MANAGEMENT FOR ENHANCING PRODUCTIVITY OF THE WORLD’S FORESTS

R G Wagner1, K M Little2, and B Richardson3

1University of Maine, 5755 Nutting Hall, Orono, Maine, USA, 04469, Email: bob_wagner@sunefl.maine.edu; 2Institute for Commercial Forestry Research, PO Box 100281, Scottsville, South Africa, 3209, Email: Keith@icfr.unp.ac.za; 3Forest Research, Private Bag, Rotorua, New Zealand, Email: Brian.Richardson@ForestResearch.co.nz

The management of competing vegetation has evolved with forest management over the past half century and is now an integral part of modern forestry practice in many parts of the world. Vegetation management, primarily using herbicides, has proven especially important in the establishment of high-yield forest plantations. Over the past few decades, there has been substantial research quantifying the wood yield gains associated with the management of competing vegetation. We review results from the longest-term studies in North America, South Africa, and New Zealand. Although management intensity and rotation lengths vary widely among forest types, 50% to 150% or more increases in wood volume have been found in North America and 30% to 120% or more increases found in South Africa and New Zealand. The responses appear to be relatively consistent for a wide range of tree species and site conditions.
The weed control efficacy of the MON14445 glyphosate formulation was studied in several Roundup Ready® cotton cultivars in Brazil. This glyphosate formulation was tested against several conventional herbicide programs in Santa Cruz das Palmeiras (SP), Santa Helena de Goiás (GO) and Sorriso (MT) from 1999 to 2003. The MON14445 herbicide rates ranged from 0.5 to 4.0 Kg. ha⁻¹. Single and sequential applications were tested in different timings after crop emergence. The Roundup Ready® cotton tolerance to MON14445 was evaluated based on visual ratings. The weed species evaluated were Bidens pilosa, Commelina benghalensis, Euphorbia heterophylla, Ipomoea spp, Sida rhombifolia, Brachiaria plantaginea, Cenchrus echinatus e Digitaria horizontalis. None of the genotypes tested demonstrated any MON14445 herbicide injury in applications until the V4 stage. The combined analysis of these studies demonstrated that the most adequate MON14445 application rate for Roundup Ready® cotton in Brazil was 1.5 Kg.ha⁻¹ until the V4 stage followed by an intra-row application of 1.0 Kg. ha⁻¹ 20 to 30 days after the first application.

The weed control efficacy of the MON14445 glyphosate formulation was tested in different timings after crop emergence. The ranges from 0.5 to 4.0 Kg. ha⁻¹. Based on visual ratings, the weed species evaluated were Ipomoea spp, Sida rhombifolia, Brachiaria plantaginea, Cenchrus echinatus e Digitaria horizontalis. None of the genotypes tested demonstrated any MON14445 herbicide injury in applications until the V4 stage. The combined analysis of these studies demonstrated that the most adequate MON14445 application rate for Roundup Ready® cotton in Brazil was 1.5 Kg.ha⁻¹ until the V4 stage followed by an intra-row application of 1.0 Kg. ha⁻¹ 20 to 30 days after the first application.

The most common forest vegetation management objectives are to 1) minimise resource competition, and 2) to develop methods for managing specific weed species. This paper reviews relevant models and decision support systems for assisting in achieving these objectives. The aim of reducing resource competition is to increase crop-tree growth and survival. Several modelling approaches have been applied to this problem and these generally estimate crop survival and growth benefits following some form of generalised weed control. Linkages with models of older tree crops are needed for comparing vegetation management strategies in the context of complete silvicultural regimes. More refined individual tree models use competition indices to estimate the quantity of weed vegetation within the growing space around each tree. The indices reflect resource use by the weeds and are sensitive to changes in weed growth over time and to the application of specific vegetation management treatments. Hybrid and process-based models have the potential to provide more generalised models of inter-specific competition, but their usefulness for forest practitioners has yet to be proven. Some forest vegetation management problems require a more detailed understanding of the biology and ecology of a specific species. In this case, different modelling approaches that consider overall weed population dynamics, distribution, or spread may be appropriate.
Several studies were conducted to evaluate the weed control efficacy and crop tolerance of several Brazilian Roundup Ready® soybean cultivars (Event GTS 40-3-2) to the MON77280 glyphosate formulation (480 g. ae. L⁻¹). These studies were conducted in several tropical and sub-tropical environments from 1998 to 2003. The experimental sites comprised the following locations: Náo Me Toque (RS), Ponta Grossa (PR), Rolândia (PR), Santa Cruz das Palmeiras (SP), Santa Helena de Goiás (GO), and Sorriso (MT). The MON77280 weed control efficacy was compared to combinations of conventional herbicides used in the regions tested. The MON77280 rates ranged from 0.5 to 4.0 L.ha⁻¹ in single and sequential applications. The Roundup Ready® soybean cultivar tolerance to MON77280 was evaluated based on visual ratings. The weed species evaluated were Amaranthus viridis, Bidens pilosa, Commelina benghalensis, Euphorbia heterophylla, Glinosiga parviflora, Ipomoea plantaginea, Portulaca oleracea, Raphanus raphanistrum, Richardia brasiliensis, Sida rhombifolia, Spasmacoila latifolia, Brachiaria plantaginea, Brachiaria decumbens, Cenchrus echinatus, Digitaria horizontalis and Eleusine indica. Areas containing Commelina benghalensis and/or heavy weed infestation require MON77280 application until 20 days after emergence. A sequential application could be required. None of the cultivars tested showed any MON77280 injury. The combined analysis of these studies revealed that the most adequate MON77280 application rate was 2.0 L.ha⁻¹ to 30 days after emergence.

The MON14445 glyphosate formulation (720 g. ae.Kg⁻¹) was subjected to weed control evaluation in Roundup Ready® corn (NK603) in Brazil. This glyphosate formulation was compared to several conventional herbicide programs. The testing sites were Náo-Me-Toque (RS), Ponta Grossa (PR), Rolândia (PR), Santa Cruz das Palmeiras (SP), Santa Helena de Goiás (GO) and Sorriso (MT) from 1999 to 2003. The MON14445 rates ranged from 0.5 to 5.0 Kg.ha⁻¹ in single and sequential applications. Several application timings and herbicide combinations were also tested. The Roundup Ready® corn tolerance to MON14445 was evaluated based on visual ratings. The weed species evaluated were Amaranthus viridis, Bidens pilosa, Commelina benghalensis, Euphorbia heterophylla, Glinosiga parviflora, Ipomoea spp., Portulaca oleracea, Raphanus raphanistrum, Richardia brasiliensis, Sida rhombifolia, Spasmacoila latifolia, Brachiaria plantaginea, Brachiaria decumbens, Cenchrus echinatus, Digitaria horizontalis and Eleusine indica. Areas containing Commelina benghalensis and/or heavy weed infestation require MON14445 application until 20 days after emergence. A sequential application or herbicide combination could also be required. None of the Roundup Ready® corn genotypes tested showed any injury in MON14445 applications. The combined analysis of these studies revealed that the most adequate MON14445 application rate was 2.0 Kg.ha⁻¹ to 30 days after emergence.

Management of maize row spacings and populations has been used for many years to increase maize productivity. In 2002 and 2003, non irrigated maize was grown in 38-, 56-, and 76-cm row spacings in Gurdaspur District, India. Glufosinate at 0.29 kg/ha was applied to common lambsquarters (Chenopodium album) averaging 5 cm in height in each plot. Maize population and row spacing did not influence weed emergence following application of glufosinate. Common lambsquarters biomass and seed production were reduced when grown under canopies of maize planted in populations exceeding 72 900 plants/ha. Common lambsquarters biomass was reduced as maize row spacings were reduced from 76 to 38 cm. Early-season interception of photosynthetically active radiation (PAR) by maize canopies increased as row spacings decreased, but differences were not apparent later in the season. Interception of PAR was similar throughout the season when maize populations exceeded 72 900 plants/ha. Maize yields were not affected by row spacing, but they were increased with maize populations of 72 900 plants/ha or higher.

Field experiments were conducted in 2001, 2002, and 2003 at Manhattan and Hays, Kansas to study the effect of glyphosate-resistant cropping system on soil nematode and microbial communities in both conventional and no-tillage environments. Crop rotation schedules were soybean-corn-soybean and corn-soybean-soybean at Manhattan and Hays, respectively. Herbicide treatments were conventional herbicide, glyphosate applied when weeds were 10 cm or 20 cm tall at a rate of 1.12 kg ha⁻¹. Soil samples for nematode assessment and microbial functional diversity measurement were taken in spring and fall of each year. Soil microbial biomass carbon was measured monthly throughout the growing season. Overall nematode community was not altered by glyphosate-resistant cropping system when compared to conventional herbicide system at both locations. In both 2002 and 2003 growing seasons, the nematode communities were higher in conventional tillage than in no-tillage at Manhattan. Both soil microbial biomass carbon and functional diversity were not altered by glyphosate-resistant cropping system when compared to conventional herbicide system. The study clearly showed that nematode and microbial communities response to glyphosate-resistant cropping system was similar to that of conventional herbicide system.
Application of glyphosate to glyphosate-resistant (GR) soybean results in significant injury under certain conditions. We hypothesized that if GR soybean is completely resistant to glyphosate, injury could be caused by a metabolite of glyphosate, aminosulfonic acid (AMPA), a known phytotoxin. We examined glyphosate and AMPA effects on one- to two-trifoliate leaf stage (16- to 18-d old) GR and conventional soybean in the greenhouse. In GR soybean, single applications of glyphosate-isopropylammonium (1.12 to 13.44 kg/ha) reduced chlorophyll content of the second trifoliate leaf by 4 to 14% at 7 d after treatment (DAT) and shoot dry weight by 7 to 16% at 14 DAT. A single application of AMPA (0.12 to 8.0 kg/ha) reduced chlorophyll content of the second trifoliate leaf by 16 to 69% at 4 DAT and shoot fresh weight by 4 to 49% at 14 DAT in both GR and conventional soybeans. AMPA at 0.25 kg/ha produced chlorotic effects in both GR and conventional soybean similar to those caused by glyphosate-isopropylammonium at 13.44 kg/ha in GR soybean. AMPA levels found in AMPA-treated soybeans of both types and in glyphosate-treated GR soybeans correlated similarly with phytotoxicity. These results suggest that soybean injury to GR soybean from glyphosate is due to AMPA formed from glyphosate degradation.

Weed infestation restricting the rice production to the tune of 20%. Costly hand weeding is now gradually replaced by some alternative chemicals weed management practices. But considering the effect of these chemicals on environmental pollution, the eco-safer herbicides are most desirable. The field experiment conducted during summer season’ 2002-03 in the farmer’s field at Kalyani, India. The treatments comprised five different doses of IR 5878 50 G (60, 75, 100, 125, and 150 g a.i.) applied as post-emergence at 25 DAT in the standing water of 3 cm, Butachlor 50 EC at 1250 g a.i. ha

1 applied PE at 3 DAT, Anilofos 30 EC at 400 g a.i. ha

2 applied pre-emergence at 3 DAT, Pyrazosulfuron - ethyl 10 WP at 30 g a.i. ha

3 applied as EPE emergence at 7 DAT.

The experiment revealed that Pyrazosulfuron – ethyl recorded the lowest dry weight of weeds, which was statistically at par with all the tested herbicides except IR 5878 at 60 g a.i. The increase in the dose of IR 5878, the dry weight of weeds decreased gradually. The highest grain yield of 4.75 t ha

4 was recorded under IR 5878 at 125 g a.i. ‘which was closely followed by IR 5878 at 100 and 150 g a.i.’ No phytotoxicity was recorded by these tested herbicides to the crop. IR 5878 recorded the lowest chlorophyll content of Echinocloa spp., Cyperus spp. and Ludwigia spp. at 125 and 150 g a.i. closely followed by Pyrazosulfuron-ethyl. It can be concluded that IR 5878 can be used for eco-safety in-time weed management in rice.

Herbicide-tolerant canola, introduced in 1996, was rapidly adopted in Western Canada and now occupies >90% of the 4.6 million ha seeded annually. To determine the impact of the new technology, we compared residual weed abundance and diversity in canola fields. Weed surveys were conducted in 495 random selected fields in 1995-1997 and in 674 fields in 2001-2003. Individual weeds were counted prior to harvest in 20 quadrats per field and species identified. Average weed density declined from 43 to 27 plants m

1. This drop occurred in annual broad-leaved, facultative winter annual and perennial life forms but grassy species increased. Data were summarized and ranked using a relative abundance index. The change in rank of the top 30 species was used to identify shifts occurring between the two survey periods. Species, such as Thaspis arvense L., not previously well controlled, have decreased in relative abundance while Setaria viridis L. Avena fatua L. and volunteer crops increased in relative abundance. Diversity as measured by species richness, dominance, and evenness indices declined significantly. Only three of the 34 most abundance species are native and none are classed as endangered. The significance of the decline in these alien invasive species to overall biodiversity has yet to be assessed in Western Canadian agro-ecosystems. It is difficult to attribute weed shifts to a specific factor because the adoption of this technology included changes from narrow- to wide-spectrum products, including glyphosate, glufosinate and imidazolinone herbicides, and changes in varieties, time of application, and tillage regime.
Department of Crop Protection, National Institute of Agricultural Science and Technology, RDA, Suwon 441-707, Korea, moonbc@rda.go.kr, 2) Junnam Agricultural Research and Extension Services, oddwon@jares.go.kr, 3) Junbuk Agricultural Research and Extension Services, shcho0360@hanmail.net, 4) Chunngam Agricultural Research and Extension Services, isoong4@hanmail.net, 5) Kyeongbuk Agricultural Research and Extension Services, jjg-won@hanmail.net, 6) Kyonggi Agricultural Research and Extension Services, han3540@hanmail.net 7) LG Life Sciences Ltd, dosoonkim@gls.co.kr

Field experiments were conducted to predict rice yield losses caused by barnyardgrass (Echinochloa crus-galli) and pickerelweed (Monochoria vaginalis) at a range of plant densities under different rice cultivations in Korea in 2003, and to determine its economic threshold levels (ET). All data were fitted to Cousens’ rectangular hyperbola to estimate parameters for predicting rice yield loss. The competitiveness represented by parameter β, whose reciprocal (1/β) is a weed density reducing crop yield by 50%, of barnyardgrass were 0.034, 0.035, 0.035, 0.0072, and 0.094 in normal-season machine transplanting of 10 (10 NMT), 20 (20 NMT), and 30 days old seedling (30 NMT), late-season machine transplanting of 30 days old seedling after barley harvest (30 LMT), and dry direct-seeding (DDS), respectively. This result indicates that in normal-season transplanting, the older the rice seedling when transplanted, the less the yield loss caused by barnyardgrass is, and the competition effect of barnyardgrass is greater in early rice transplanting than late one. Economic thresholds calculated using Cousens’ equation were 5, 7, 49, and 4 plants of barnyardgrass per 10 m² for 10 NMT, 20 NMT, 30 NMT, 30 LMT, and DDS, respectively. The competitiveness of pickerelweed were 0.0018, 0.00096, and 0.00146 in 10 NMT, 20 NMT, and 30 LMT, respectively, and its corresponding ETs were 129, 290, and 207 plants of pickerelweed per 10 m², respectively.

S33M10P00
PREDICTION OF RICE YIELD LOSS AS A RESULT OF RICE-WEED COMPETITION IN DIFFERENT RICE CULTIVATION METHODS

B. R. Pandit and Sailesh Prajapati

Ecology division, Department of life sciences, Bhavnagar University, Bhavnagar - 364 002 [India]

Macronutrient concentrations (Na, K, Ca, Mg, N, P) of leaflitter and other litter fragments (twigs and bole) were studied. Leaflitter contained greatest amount of nutrient concentrations. Effectiveness of plant as a wasteland development species is appraised. The present data emphasizes that P. juliflora can be successfully utilized for the reclamation of coastal saline and alkaline wastelands of Bhavnagar districts, by improving the soil fertility. The plant easily establish even in the nutrient poor and highly saline soils. The high nutrient content of the litter produced will be change in the soil nutrient chemistry over long period of growth of Prosopis stands, provided in litter produced is not removed. This can be avoided by making earthen bounds around the plantation area. By avoiding addition of chemical measures and gypsum as in the traditional wasteland improvement techniques, the practice of P. juliflora cultivation enhances the sustainable exploration of land and bio resources.

Key words: Prosopis juliflora, minerals in litter, wastelands.

S33M10P00
LITTER ANALYSIS OF PROSOPIS JULIFLORA. DC. A SPECIES FOR WASTELAND DEVELOPMENT

S. S. Punia, R.K. Malik and Parvinder Shoeran

Department of Agronomy
Chaudhary Charan Singh Haryana Agricultural University, Hisar-125 004 (Haryana)

To evaluate the efficacy of fenoxaprop-ethyl and clodinafop-propargyl as tank mixed with metsulfuron or 2,4-D(esther) against complex weed flora in wheat, two field experiments were conducted during the rabi (winter) season of 2001-02 and 2002-03 at CCS Haryana Agricultural University, Hisar. The experimental soil in both the years was sandy loam with 61% sand, 22.1% silt and 19.1% clay, medium in fertility with 0.29% D.C. and pH of 8.2. Experimental field was infested with both grassy as well as broadleaf weeds. Wheat variety PBW-343 was drilled in 22.5 cm wide rows using a seed rate of 100 kg/ha on November 2, 2001 and October 28, 2002. Tank mixtures of fenoxaprop and clodinafop with metsulfuron-methyl and 2,4-D in various ratios were applied at 35-40 days after sowing. Dominant grassy weeds viz. Avena ludoviciana, Phalaris minor Retz. and broadleaf weeds like Chenopodium album L., Melilotus indica All. and Rumex retroflexus L. were effectively controlled by tank mix application of fenoxaprop + metsulfuron (30:1 or 40:1) at 120 g ha⁻¹ or clodinafop + metsulfuron (20:1) at 50 or 60 g ha⁻¹ applied at 30DAS. Tank mix combinations of 2, 4-D with either clodinafop or fenoxaprop were antagonistic resulting to poor control of grassy weeds and lower grain yield of wheat. Based on the results of above trials, it can be summarized that tank mix application of metsulfuron either with fenoxaprop or clodinafop-propargyl at 30-35 DAS is needed to manage the complex weed flora in wheat. 2, 4-D should not be used as tank mix with clodinafop or fenoxaprop.

S33M10P00
EFFECT OF PREVIOUS CROP AND WEED CONTROL ON WHEAT YIELD AND WHEAT GROWTH

J. R. Moyer¹, R. E. Blackshaw², R. Doram³, H. C. Huang⁴

¹ Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5401-1st Ave. S., P. O. Box 3000, Lethbridge, Alberta, Canada.
² TFJ 4B1, moyer@agr.gc.ca, blackshaw@agr.gc.ca, doram@agr.gc.ca, huangh@agr.gc.ca

Crop rotations have an important effect on weed populations and crop yields. However, the relative importance of herbicide rotation that accompanies crop rotation compared to crop rotation alone in managing weeds is not known. To determine the effect of crop and herbicide treatment on following crop yield and weed growth, eight crops were grown with and without herbicide application. Winter and spring wheat were grown the following year without herbicide application for weed control. Herbicide treatments in lentils and fallow increased overall (spring and winter) wheat yield whereas wheat yields following herbicide and no herbicide treatments were similar for mustard, canola, barley, spring wheat and oat. Maximum spring and winter wheat yields occurred after lentils and minimum yields occurred after mustard. Overall weed densities in spring and winter wheat were 37% and 28% greater after no herbicide than after recommended herbicide treatments, respectively. In the no herbicide treatment, mean weed densities were twice as large in spring and winter wheat after fallow and mustard as after barley. In winter wheat after annual crops with no herbicide treatment, there was no correlation between weed biomasses in the previous annual spring seeded crop and the biomasses of weeds in mature wheat. However, biomasses of weeds such as wild oat and green foxtail in spring wheat were correlated with their biomasses in the previous crops. Therefore, in this study weed growth and wheat yield were affected as much or more by crop sequence as by herbicide application.

S33M10P00
BIO-EFFICACY OF TANK MIX COMBINATIONS OF FENOXAPROP-METHYL AND CLODINAFOP-PROPARGYL WITH BROADLEAF HERBICIDES FOR BROAD SPECTRUM WEED CONTROL IN WHEAT (TRITICUM AESTIVUM L.)

S. S. Punia, R.K. Malik and Parvinder Shoeran

Department of Agronomy
Chaudhary Charan Singh Haryana Agricultural University, Hisar-125 004 (Haryana)
The poor productivity of rice-rice system is mainly attributed to severe weed infestation. Manual removal is expensive, time consuming and often limited by paucity of labours. Herbicide alone, fails to provide effective control of weeds. The study was therefore, undertaken to evaluate an appropriate integrated weed management practice for this system. The study was conducted during summer and rainy seasons of 2001 and 2002 at the research farm of the university, Jorhat. The acid inceptisol (pH 5.4) of the experimental site had 248, 6.3 and 102 kg ha\(^{-1}\) of N, P and K respectively. Treatments consist of stale seedbed + hand weeding, conventional seedbed + hand weeding, butachlor 1.0 kg ha\(^{-1}\) + dry land weeder, butachlor 1.0 kg ha\(^{-1}\) and anilofos 0.4 kg ha\(^{-1}\) imposed to the direct seeded rice during summer season while, two treatments viz., no weeding and rotary weeder (20 and 40 days after transplanting) were imposed to the succeeding rice. Appropriate statistical method was adapted. Study concludes that pre-emergence application of butachlor 1.0 kg ha\(^{-1}\) followed by the use of dry land weeder at 25 DAE to the direct seeded rice and rotary weeder twice (20 and 40 DAT) to the succeeding transplanted rice is effective.

The transplanted rice in West Bengal is grown in rainy season in waterlogged soil and rapeseed is grown in winter season in aerated soil. The main objective was to evaluate the low dose high efficiency herbicides for weed management in rainy season rice and on succeeding rapeseed crop. This field experiment was conducted in the rainy season of 2002 and 2003 at university farm, Bidhan Chandra Krishi Viswaividyalaya, India in randomised block design with 13 treatments involving different herbicides applied at 3 DAT along with two hand weeding at 25 & 40 DAT and unweeded control. Acetachlor @ 200 g a.i./ha applied as sand mix significantly reduces the weed population, biomass at 30 DAT and nutrient uptake by weeds at harvest over the control. Grain and straw yields and nutrient uptake by rice also significantly increased due to application of acetachlor @ 200 g a.i./ha over weedy check. There was no residual effect on weed dynamics and growth of rapeseed crop. So, acetachlor @ 200 g a.i./ha applied with sand mix at 3 DAT was the best herbicides during rainy season transplanted rice in rice-rapeased sequence.

Rice-rice is the major cropping system in the state of West Bengal, India. Continuous cultivation of rice leads to dominance of some weeds particularly Echinochloa sp. Farmers have to incur sizable amount of money for controlling the weeds in rice field. The objective of this experiment was to test the efficacy of different herbicides and to evaluate the correct dose and methods of application for weed control in rice and their residual effect on succeeding crop. The present investigation was laid out during rainy season 2002 at university farm, Bidhan Chandra Krishi Viswaividyalaya, India in randomised block design with 10 treatments (i.e, acetachlor @ 150,200 and 300 g a.i./ha applied as spray and acetachlor @ 150 and 200 g a.i./ha as sand mix, almix @ 4 g a.i./ha, pretilachlor @ 750 g a.i./ha and butachlor @ 1250 g a.i./ha applied as spray) applied at 3 DAT and another treatment with two hand weeding at 25 & 40 DAT and unweeded control. Weed population (27.0/m\(^2\)), biomass (5.35g/m\(^2\)) and weed index (2.75) were significantly reduced due to application of acetachlor@ 200 g a.i./ha. This treatment also significantly increased grain (3330 kg/ha) and straw (5067 kg/ha) yields over unweeded control where yields were 2426 and 4646 kg/ha, respectively. There were no residual effect of herbicides on weed population and biomass at 30 DAT and grain and straw yield of summer rice. Acetachlor @ 200 g a.i./ha applied at 3 DAT with sand mix was the best herbicides during rainy season transplanted rice in rice-rice cropping sequence.

S33MT10P00

EFFICACY OF HERBICIDES ON POPULATION AND DRY WEIGHT OF WEEDS AND YIELD OF TRANPLANTED RICE AND THEIR SUBSEQUENT RESIDUAL EFFECT ON SUMMER RICE

R.C. Samui\(^1\), Anirban Mondal\(^2\) and Subhendu Mandal\(^3\)

Department of Agronomy, Faculty of Agriculture, Mohanpur, Nadia, PIN-741252

West Bengal, India

S33MT10P00

MANAGEMENT OF CYPERUS ROTUNDUS WITH TRIFLOXYSULFURON IN GREEN SUGARCANE IN BRAZIL

Soares, J. E.\(^1\), Braz, B.A.\(^1\), Howard, S.\(^2\)

\(^1\) Syngenta Proteção de Cultivos Ltda - São Paulo, Brazil

jose.erasmo.soares@syngenta.com,

benedito.braz@syngenta.com

\(^2\) Syngenta Crop Protection Ag - Basel, Switzerland

stott.howard@syngenta.com

Cyperus rotundus is a very competitive and allelopathic species that can significantly reduce the productivity and longevity of conventional and green sugarcane in Brazil. Therefore, it is imperative to reduce Cyperus rotundus populations to a level that ensures the economic viability of sugarcane production. Trifloxysulfuron is a novel sulfonylurea herbicide from Syngenta that is formulated as a 75WG ready mixture with ametryn (18.5 g trifloxysulfuron + 731.5 g ametryn/kg) to provide a unique product for selective, broad-spectrum weed control in sugarcane. A well-established benefit of trifloxysulfuron use in conventional sugarcane production includes suppression of Cyperus rotundus in one-shot application, as measured by reduced tuber production and viability. The objective of this research was to determine whether trifloxysulfuron in a 3-year application programme would be as effective in reducing Cyperus rotundus populations in green cane as it is in conventional sugarcane production. Three trials were established in 2002 (macroplots with 5 replicates) comprised of these treatments (rates in g a.i./ha): untreated, trifloxysulfuron (22.5), trifloxysulfuron + ametryn (37+1463), sulfentrazone (900), and imazapic (122.5). Treatments containing trifloxysulfuron included a non-ionic adjuvant and were applied post-emergence to the sugarcane and Cyperus rotundus. Sulfentrazone and imazapic were applied in pre-emergence. Visual control assessments, tubers counts and sugarcane yield assessment were made. Results from the second year of the three-year program demonstrate that trifloxysulfuron significantly decreased the number of viable Cyperus rotundus tubers, by 70 % in means and increased yields. Trifloxysulfuron can be used as an excellent tool to manage Cyperus populations in green sugarcane production.
The low competitive ability and growth rate of cotton at the beginning of growth season affect it negatively by weeds which are the most important factors in limiting yield and product quality. In order to determine the effects of different periods of weeds interference on yield, yield components and lint quality in cotton a field experiment was conducted at the research field of Abooreihan Campus, University of Tehran in 2002. A complete randomized block design with three replications and naturally occurring of weeds were used. Seven chronological treatments including weeds interference till 0 (season long weed- free control), 2, 4, 6, 8, 10, 12 weeks after emergence and other seven chronological treatments including weed-free till the same periods were used. The dominant weed in all the experiment period was Johnson grass. Results indicated that there was a significant reduction in yield components due to continuity of weeds interference. Among the yield components, the most important one which was affected by competition was number of boll per plant which was reduced by 98 percent in season-long weedy field. Also by an increase in weeds interference period by more plant which was reduced by 98 percent in season-long weedy field. Also by an increase in weeds interference period by more plant which was reduced by 98 percent in season-long weedy field. A series of replicated small plot trials were conducted in northern NSW to find the factors influencing lucerne control. This paper reviews the herbicide and adjuvant component. Glyphosate at 1350 to 1800 g a.i. ha⁻¹ gave 68 to 89% control, metsulfuron methyl at 12 g a.i. ha⁻¹ resulted in 9.5% control, while auxin-type herbicides gave superior control. Different formulations of 2,4-D at 1000 g a.i. ha⁻¹ resulted in 93 to 100% control, while MCPA at 1000 g a.i. ha⁻¹, MCPA + clopyralid at 500 + 75 g a.i. ha⁻¹ and dicamba at 500 g a.i. ha⁻¹ gave 68%, 79% and 25% control respectively. Further trials showed that triclopyr + picloram at 150 + 50 g a.i. ha⁻¹ consistently gave control above 93%. Trials were also conducted to investigate improving the efficacy of 2,4-D amine formulations. When using 2,4-D d.m.a. at a sub lethal rate non ionic and buffering surfactants gave an increased control of 25% while paraffinic oil and organosilicone penetrant gave 29% and 24% improvement respectively. In NSW triclopyr + picloram is now registered and 2,4-D amine formulations “permitted” for the removal of lucerne.
S33MT15P00

GERMINATION ECOLOGY, EMERGENCE AND EARLY HOST PARASITIZATION OF CUSCUTA CAMPESTRIS YUNCKER

S. Benveniti1, A. Bonetti2, and G. Dinelli2

1Dipartimento di Agronomia e Gestione dell’Agroecosistema, Università di Pisa, Via S.Michele, 2 - 56124, Pisa, Italy, sbenve@agr.unipi.it; 2Dipartimento di Scienze e Tecnologie Agroambientali, Università di Bologna, V.le Fanin, 44- 40127 Bologna, Italy, gdinelli@agrsci.unibo.it

Cuscuta campestris Yuncker is a parasitic weed belonging to Convolvulaceae family and is widespread both in temperate and sub-tropical ecosystems. As concerns the ecology of this parasitic weed, several aspects are still unclear such as maximum host-weed distance for parasitization, role of phenological stage of host, criteria of host choice and longevity of seeds. The aim of the present work was to investigate either germination and dormancy ecology of C. campestris Y. seeds and physiological mechanisms involved in early parasitization of sugarbeet seedlings. The parasitic weed is characterized by an evident primary dormancy which is removed by scarification. Germination was negligible at 10°C and optimal at 30°C, while it was not influenced by light. Seed burial induced a cycling of induction and breaking of secondary dormancy. The emergence was inversely proportional to the depth of burial. The emergence was observed only for seed buried within the first 5 cm of soil profile. The number of weed to the depth of burial. The emergence was inversely proportional.

S33MT15P00

GROWING DEGREE DAYS - A PREDICTIVE TOOL FOR OROBANCHE SPP. PARASITISM IN CERTAIN CROPS

H Eizenberg1, J B Colquhoun2, C A Mallory-Smith2, J Hershenhorn1, T Landa2, G Achdari2, and D Plakhin1

1Department of Weed Research, Newe Ya’ar Research Center, P.O. Box 1021 Ramat Yishay, Israel, eizenberg@volcani.agr.gov.il; 2Department of C and SS, Oregon State University, Corvallis, Oregon, USA Jed.Colquhoun@oregonstate.edu

Temperature is strongly related to the dynamics of Orobanche spp. parasitism on its hosts. In previous studies, we have described the relationship between temperature and the parasitism process of O. aegyptiaca, O. minor, and O. cumana, in tomato, red clover, and sunflower, respectively. Temperature data collected from studies conducted under controlled conditions and in the field were converted to growing degree days (GDD). Reanalysis of the data from those studies enabled us to develop a predictive model for the parasitism dynamics based on GDD for O. aegyptiaca, O. minor, and O. cumana, in tomato, red clover, and sunflower, respectively. Orobanche development was classified into stages according to the sizes: S1 - 1 to 2 mm; S2 - 3 to 4 mm; S3 - 5 to 10 mm and S4 - greater than 10 mm including shoots. The predictive models were developed independently for each host based on the temperature range that reflects climatic conditions during the crop season. The model predicts lag and maximum phase for the four parasitism stages in relation to GDD in all the three crops. The model was validated and confirmed in field experiments. In future related studies, the proposed predictive models might benefit us as base models that will be used to optimize chemical control of the parasite and to alter sowing dates in order to avoid or reduce parasitism rate.

S33MT15P00

INTEGRATED MANAGEMENT OF OROBANCHE MINOR IN TRIFOLIUM PRATENSE

C A Mallory-Smith1, J B Colquhoun1, R D Lins2 and H Eizenberg2

1Department of Crop and Soil Science, Oregon State University, USA, Carol.Mallory-Smith@oregonstate.edu; 2Newe Ya’ar Research Center, P.O. Box 1021 Ramat Yishay, Israel

Since the discovery of Orobanche minor in red clover (Trifolium pratense) fields in the USA in 1998, there has been a concerted effort to develop an integrated management system for its control. The biology of O. minor prevents the use of only one weed control tactic; therefore, biological based practices were combined with chemical weed control. Wheat (Triticum aestivum) was found to be a false host that stimulated germination of O. minor seed; however, O. minor does not attach and develop on wheat. Therefore, wheat can be used to reduce the O. minor seed bank. Imazamox herbicide provided effective O. minor control with sufficient crop safety. Optimal herbicide application timing is difficult given that O. minor attached to red clover remains below ground for several months prior to emergence. Consequently, a growing degree day model for O. minor development was constructed and will be used to determine the optimum herbicide application timing based on O. minor attachment and early growth. The commercialization of imazamox resistant wheat provided another possible control option. Imazamox resistant wheat was interseeded with red clover with the expectation that the wheat will cause suicidal germination of the O. minor. In addition, imazamox can be sprayed over the wheat and red clover without killing either crop but would control any O. minor that had attached to the red clover. The integrated O. minor management system will improve O. minor control and maintain a viable cropping system for red clover producers.

S33MT15P00

VARIATION IN THE RESPONSE OF RESISTANT SUNFLOWER TO OROBANCHE CUMANA POPULATIONS IN ISRAEL

D Plakhin, H Eizenberg, T Landa, G Achdari, Y Hershenhorn, and DM Joel

Department of Weed Research, Newe Ya’ar Research Center, P.O. Box 1021 Ramat Yishay, Israel, eizenberg@volcani.agr.gov.il

Orobanche cumana parasitizes sunflower in Israel. In recent years, several resistant sunflower varieties were bred in Israel and reduced the damage caused by O. cumana. No differences in O. cumana response to the resistant sunflower varieties was identified until 1999. Studies indicated that only race C was present in Israel, with very low inter-and intra-specific diversity. However, in 2000 O. cumana infected the resistant sunflower ‘Ambar’ in two fields in the northern part of Israel. In 2001 and in 2002, O. cumana parasitized resistant sunflowers in three more fields. In order to determine the virulence of O. cumana toward the resistant sunflower varieties under controlled conditions, five populations of the parasite were collected from fields in which resistance was broken. Another O. cumana seed lot, which was collected on susceptible sunflower in Alonim in 1997 and that does not infect the resistant sunflower varieties served as a reference. The resistant Sunflower cultivar ‘Ambar’ and the susceptible cultivar ‘D.Y.3’ were separately planted in pots that were pre-inoculated with seeds of the various O. cumana populations. O. cumana from Alonim (our reference) failed to attack the resistant sunflower in all pots. However, three virulence levels were found for the three O. cumana population originating from the other fields. In the current note we report for the first time on the occurrences of a new virulent race(s) of O. cumana in Israel.
A study on germination of seeds of *Rhamphicarpa fistulosa* (Hochst.) Bent. a new pest of rice

Gualbert Gbèhounou¹ and Paulin Assigi²

Rhamphicarpa fistulosa, from the family Scrophulariaceae is a facultative root hemiparasitic weed, which has recently become a primary pest of lowland rice in several countries in West Africa, where rice production is encouraged for food security and to limit importation. In 1996, *R. fistulosa* was identified by farmers in the Republic of Bénin as a new pest, which hampers rice production, inflicting 40 to 100% yield loss. Being considered in general as a secondary pest, biology and ecology of *Rhamphicarpa* species have received little attention from researchers. In order to help define a management strategy of the new pest, germination studies were conducted *in vitro* on seed populations collected from two inland valleys in 1999 and 2001. Seeds were surface sterilized, using sodium hypochlorite, and submitted to germination tests on filter paper imbibed with distilled water or water soluble root exudates of rice seedlings. Germination patterns of the seed populations were studied using regression analysis. The results indicated that root exudates of the readily parasitized rice variety Farox 304-4-1-2 did not stimulate germination of the seeds. At room temperature (28-30°C), when exposed to daylight, seeds of *R. fistulosa* require a conditioning period of two to three weeks on moist filter paper before they will germinate. Maximum germination level reached is increased if seeds are hidden from light during the conditioning period. Seeds of *R. fistulosa* are short lived, with a longevity of approximately one year. These three findings, which are of practical importance, were not reported before.

Key words: *Rhamphicarpa fistulosa*, germination and rice.

Utilizing herbicide-resistant tomato to manage *Orobanche aegyptiaca*

Y Goldwasser and B Rubin

R H Smith Institute of Plant Sciences and Genetiscs in Agriculture, Faculty of Agricultural, Food & Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel, gold@agri.huji.ac.il

Orobanche aegyptiaca is one of the most serious hindrances in tomato production throughout the Mediterranean region. Previous studies have shown that glyphosate applied onto a host crop effectively controls *Orobanche* spp. by rapid translocation and accumulation in the root-attached parasite. However, susceptibility of host crops to glyphosate has been an obstacle in application of this approach. Preliminary studies were conducted with tomato line 1232, engineered with the plasmid pMON894, encoding a glyphosate-tolerant form of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). A single foliar treatment of glyphosate (540 g ae/ha) was applied on glyphosate-resistant tomato (GRT) plants 14, 24 or 34 days after planting (DAP). Glyphosate applied at 14 DAP caused severe damage to tomato flowers and prevented fruit set but did not control late *O. aegyptiaca* inflorescences development. Glyphosate applied at 24 DAP controlled 98% of *O. aegyptiaca* but caused damage to tomato plants and flowers, resulting in 30% reduction in tomato fruit yield compared to the non-treated control. The late treatment (34 DAP) caused only slight damage to tomato plants and completely controlled *O. aegyptiaca*, resulting in a two-fold increase in tomato fruit yield over the non-treated control. This study exhibits the potential of timely applied glyphosate in GRT for effective *Orobanche* control. Further studies are in progress to determine effective application rates and timing.

The effect of arbuscular mycorrhiza (AM) fungi on the control/management of *Striga hermonthica* in sorghum

N A Gworgwor¹ and H. Chr. Weber²

¹Department of Crop Production, Faculty of Agriculture, University of Maiduguri, Borno state, Nigeria; ngworgwor@yahoo.com ²Fachbereich Biologie, Philips University, D-35032, Marburg, Germany; weberh@mailier.uni-marburg.de

In a pot experiment, the effect of arbuscular mycorrhiza (AM) fungi species was investigated for the potency of various fungi for the control of *Striga hermonthica* (Del.) Benth. in sorghum (*Sorghum bicolor* (L.) Moench). There were five AM fungi species tested – *Glomus intraradice*, *G. albium*, *G. mosseae*, *G. fasiculatum* and *G. etunicatum*, which were infested with *S. hermonthica* seed plus without AM fungi + *Striga* seed and without both AM fungi and *Striga* seed as check and control treatments, respectively. A tolerant sorghum variety – War-warbashi was used. These treatments were laid out in a randomized complete block design (RCBD) replicated 6 times, which were kept in a conditioned growth chamber. The results showed that *Striga* emergence on sorghum was significantly reduced by *G. mosseae* and the growth and total dry matter yield of sorghum were increased compared with the rest of the AM fungi species, but comparable to the control treatment. This study indicates that AM fungi have the potential to reduce damage by *S. hermonthica* on sorghum. The results are therefore potentially important for soil management, as perhaps the breeding for resistance to *S. hermonthica* could have consequences for mycorrhizal responsiveness of sorghum. It could be necessary to compare various sorghum cultivars that differ in *Striga* tolerance for mycorrhizal responsiveness.
S33MT15P00
BLUE LIGHT INDUCED CHANGES IN INOSITOL 1,4,5-TRISPHOSPHATE IN DODDER (CUSCUTA CAMPESTRIS) SEEDLINGS

M A Haidar¹, C-Y Hung², I Y Perera² and W F Boss ²

¹Department of Plant Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Lebanon, mnhaidar@aub.edu.lb; ²Department of Botany, North Carolina State University, Raleigh, NC 27695, wendy_boss@ncsu.edu

Doddler (*Cuscuta spp.*) is one of the most dangerous and fastest spreading parasite in potato and tomato producing areas of Lebanon and in several Middle Eastern countries. Being an obligate stem parasite, young dodder seedlings use the light environment to detect and parasitize leaves and stems of various herbaceous dicots, where they develop haustoria that are essential for survival. Previous studies revealed that blue light stimulates and red light inhibits prehaustoria development in young dodder seedlings. In this study, evidence was obtained for the involvement of inositol 1,4,5-trisphosphate (IP₃) in the mediation of prehaustoria development, prior to host attachment, to blue light. Blue light induced a significant increase in the level of IP₃, with a peak at about 30 min. Thereafter, the level of IP₃ declined to the resting value after 3 hours of blue light. Irradiation with 10 min red light pulse applied directly at the end of 0.5-4 h blue light significantly reduced IP₃, while high levels of IP₃ were observed after 10 min far-red pulse. These studies are the first in vivo demonstration of a possible role for IP₃ as a second messenger in the blue light signal transduction process in prehaustoria development in dodder. At a more applied level, our results suggest that identifying the light signal transduction(s) of prehaustoria development may provide novel targets for weed scientists through altering or knocking out this pathway.

S33MT15P00
INFLUENCE OF SALINITY ON THE INTERACTION BETWEEN TOMATO AND OROBANCHE CERNUA

W. M. Al-Khateeb¹, K. M. Hameed², and R. A. Shibli³

¹Dept. of Plant Agriculture-Crop Science, University of Guelph, Ca walkkate@uoguelph.ca ²Dept. of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, hameed@just.edu.jo

Tomato seedlings (20-30 days old) were transplanted to *Orobanchace cernua* infested and non-infested soils. All plants were maintained under 0, 25, 50 and 75 mM NaCl soil salinity levels throughout their growing period under greenhouse conditions. Plants grown in *O. cernua* infested soil and under 0, 25, and 50 mM NaCl salinity regimes showed significant reduction in their growth and their total soluble carbohydrate and protein contents in contrast with those grown in non-infested soil. However, under 75 mM NaCl salinity level all plants showed similar growth values whether they were grown in *O. cernua* infested or non-infested soil. Starting at the fifth and through out the eightieth week after transplantation there was a significant increase in plant height in the control, 25 and 50 mM NaCl irrigated plants over other treatments. Irrigation with either tap water (control) or 25 mM NaCl solution didn’t significantly affect the number of *O. cernua* shoots (4.8 and 5.2 shoots) and number of attachments (11.2, 11.0 attachments). However, irrigation with 50 mM NaCl significantly reduced the emergence of *O. cernua* (2/plant) and the number of attachments (4.4 attachments). Furthermore, irrigation with 75 mM NaCl resulted in complete elimination of *O. cernua* emergence.

Keywords: Orobanchace cernua, Tomato, Salinity.

S33MT15P00
OROBANCHE AEGYPTIACA CONTROL IN PROCEEDING TOMATO

T Lande, G Achdari, H Eizenberg, and J Hershenhorn

Department of Weed Research, Newe Ya'ar Research Center, P.O. Box 1021 Ramat Yishay, Israel, isegalah@volcani.agri.gov.il

Orobanche aegyptiaca is the most troublesome weed on processing tomato in Israel. Recently, *O. aegyptiaca* parasitism in tomato was reported from other Mediterranean countries such as Turkey, Greece and Italy. Studies conducted in pots under greenhouse conditions indicated that three foliar applications of MON 37500 (sulfosulfuron 75%) at 50 or 100 g/ha control effectively and selectively *O. aegyptiaca* parasitizing tomato. It was also determined that foliar applications must be followed by upper irrigation in order to activate the herbicide. In the present study we tested the efficacy of MON37500 to control *O. aegyptiaca* on tomatoes in the field. Additionally, the efficacy of activating the herbicide by sprinkler or moving pivot irrigation methods was compared. Experiments were conducted in 5 locations with various levels of *O. aegyptiaca* natural-infested fields. Three sequential treatments of 80 g/ha sulfosulfuron 14 and 28 days after tomato seedlings establishment, resulted in excellent control of the parasite. *O. aegyptiaca* shoots decreased from 21 shoots/m² in the non-treated control to 0.8/m² in the treated plots. Tomato yield decreased accordingly from 94 tons/ha in the treated plots to 56 tons/ha in the non-treated control. The same control efficacy was achieved when the herbicide was activated with sprinkler irrigation or moving pivot.

S33MT15P00
IS HOST RANGE POTENTIAL RELATED TO GENETIC DIVERSITY IN OROBANCHE ?

D Gidoni¹, V H Portnoy¹, I Paran¹, D M Joel²

¹Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel, E-mail : gidoni@volcani.agri.gov.il ²Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 30095, Israel, E-mail : dmy Joel@volcani.agri.gov.il

In previous reports we demonstrated significant and consistent inter-specific variations among the five major broomrape species in Israel. RAPD-based analysis was used to evaluate the magnitude of intra-specific genetic variability within Orobanche species with relation to inter-specific genetic distances.

When summing up all data collected from RAPD analysis using numerous different primers we found out that only 5% of the bands were polymorphic in *O. cumana* grown on sunflower, compared to 11% in *O. cernua* grown on tomato.

The intra-specific genetic distance rates found for *O. cumana* and *O. cernua* were however significantly lower than those found for *O. crenata* and *O. aegyptiaca*. Additionally, most of the genetic diversity within the latter two species was found among individuals rather than between geographically distant populations of each species.

Whereas sunflower is almost the only host for *O. cumana*, and *O. cernua* only attacks three plant species (tomato, eggplant, potato), *O. aegyptiaca* and *O. crenata* are known to attack a large variety of host plants from different plant families. Accordingly, a correlation was found to exist between the intra-specific genetic diversities and host-range potentials in the weedy species of Orobanche.
On-farm trials were conducted in 2001 and 2002 in the northern Guinea savanna of Nigeria to evaluate integrated *Striga hermonthica* control measures under farmer-managed conditions. These included intercropping a *Striga*-resistant maize variety with cowpea and also cropping this maize in rotation with legume trap crops—soybean and cowpea. Intercropping *Striga*-tolerant maize variety, Acr. 97T2L Comp. 1-W, with cowpea (*Vigna unguiculata L.*) or rotating it with the soybean (*Glycine max* (L.) Merr. cultivar TGX1448-2E) or cowpea cultivar IT93K452-1 proved effective in reducing *Striga* incidence and infestation compared with two years of continuously cropped maize as control. However, maize grain yield was considerably reduced when intercropped with cowpea, probably due to competition effects from the cowpea crop. Maize grown after soybean had increased grain yield of 28% compared with the control. After cowpea, the yield increase was 22%. This was due to a reduction in *Striga* infestation and damage, and increased N supply to the subsequent maize crop. Keywords: Maize; soybean; cowpea; cereal-legume rotation; intercropping; *Striga*.

S33MT15P00

CEREAL-LEGUME ROTATION TO CONTROL STRIGA AND IMPROVE ON-FARM YIELD OF MAIZE IN NORTHERN GUINEA SAVANNA: I. EFFECTS OF ONE-YEAR ROTATION

1. A.Y. Kamara1*, I. Kureh2* and B.D. Tarfa2

1International Institute of Tropical Agriculture (IITA), P.M.B. 5320, Ibadan, Nigeria
2Department of Plant Science, Institute for Agricultural Research (IAR), Ahmadu Bello University (ABU), P.M.B. 1044, Zaria, Nigeria

On-farm trials were conducted in 2001 and 2002 in the northern Guinea savanna of Nigeria to evaluate integrated *Striga hermonthica* control measures under farmer-managed conditions. These included intercropping a *Striga*-resistant maize variety with cowpea and also cropping this maize in rotation with legume trap crops—soybean and cowpea. Intercropping *Striga*-tolerant maize variety, Acr. 97T2L Comp. 1-W, with cowpea (*Vigna unguiculata L.*) or rotating it with the soybean (*Glycine max* (L.) Merr. cultivar TGX1448-2E) or cowpea cultivar IT93K452-1 proved effective in reducing *Striga* incidence and infestation compared with two years of continuously cropped maize as control. However, maize grain yield was considerably reduced when intercropped with cowpea, probably due to competition effects from the cowpea crop. Maize grown after soybean had increased grain yield of 28% compared with the control. After cowpea, the yield increase was 22%. This was due to a reduction in *Striga* infestation and damage, and increased N supply to the subsequent maize crop. Keywords: Maize; soybean; cowpea; cereal-legume rotation; intercropping; *Striga*.

S33MT15P00

FLORAL DEVELOPMENT IN HYDNORA

Erika Maass

Department of Biology, University of Namibia, Windhoek; email: emauss@unam.na

The Hydnoraceae is an extremely small family of holoparasitic root parasites with three of the four species currently recognized, occurring in Namibia. They spend most of their life cycle under the soil and the only parts of the plant that develop above the soil are the flowers and fruits, although in the case of *H. triceps*, both flowers and fruits remain subterranean.

Very little information exists on the pollination strategies of these furtive plants. In an effort to understand their floral biology, floral development was studied in *H. africana*, *H. triceps* and *H. abyssinica*. Flowers and buds at different development stages were compared during field studies over a period of four years. The antheral ring, changes during anthesis as well as the position and structure of the osmophore were studied.

Great similarities were found in the floral structure and development of *H. africana* and *H. triceps*, where there are strong indications of dichogamy. The opening in the center of the antheral ring that allows entrance to the female part of the flower becomes constricted after the pollen have been shed, thereby preventing pollinators from reaching the stigma. This seems to be less pronounced in *H. abyssinica* where the antheral ring stays open. Distinct differences were also observed between the structure of the osmophore in the three species.

The differences in habitat and hosts between *H. africana* and *H. triceps* on the one hand, and *H. abyssinica* on the other, may provide some answers to the observed differences in the floral biology of the three species.

S33MT15P00

MANAGEMENT OF CUSCUTA IN TOMATO WITH RESISTANT VARIETIES AND HERBICIDES

W. Thomas Lanini1*, Mario Miranda-Sazo1, and Yaakov Goldwasser*

1University of California, 216 Robbins Hall, Davis, CA 95616, USA, lanini@vegmail.ucdavis.edu; Institute of Plant Science & Genetics, Faculty of Agriculture, Food & Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel, gold@agri.huji.ac.il

Cuscuta (dodder) is a parasite that attacks a wide range of host species, including tomatoes. The dodder seedling coils around the host stem, penetrates its tissue and vascular system, and exploits the host by withdrawing nutrients and water. Thus, the vigor of the host is lowered and tomato production is reduced from 25 to 75%. The objectives of this study were to evaluate several tomato varieties for tolerance to field dodder (*Cuscuta pentagona*) and to test three sulfonyleurea herbicides for selective post-attachment control of dodder in tomatoes. Several tomato varieties have been observed to have some level of dodder resistance. Greenhouse and field studies were conducted to compare growth and yield of these varieties along with known susceptible varieties. Additionally, tomatoes with attached dodder, was treated with various rates of rimsulfuron, halosulfuron, or sulfosulfuron, to assess selective dodder control. Four tomato varieties were confirmed as having resistance to dodder—*H9492, H9553, H9992*, and *H9888*—all from Heinz Seed company. Dodder was observed to coil around these varieties, but attachment was either not successful or very poor as indicated by poor dodder growth. In field trials, dodder growth in these varieties was very limited and dodder seed production was reduced by over 90%. Sulfosulfuron treatment at 60 g/ha resulted in over 70% dodder control at harvest, while halosulfuron and rimsulfuron were not effective. The combination of resistant tomato varieties and sulfosulfuron treatment resulted in over 95% field dodder control, with no loss in crop yield.
Striga hermonthica (Del.) Benth is the most widespread species affecting maize and other cereals in Africa. Most tropical maize varieties are susceptible to this parasite and may suffer 100% yield loss under heavy infestation. IITA has used inbreeding as a tool for improving resistance to Striga in tropical maize and generated several resistant inbred lines. Some of these lines evaluated for three years exhibited significant differences in the number of emerged Striga plants attached to the roots in pots and in the number of emerged Striga plants on ridges in the screen house. The number of Striga plants attached to the roots in pots was positively correlated with Striga damage symptom rating ($r=0.31$, $p<0.01$) and number of emerged Striga plants ($r=0.76-0.79$, $p<0.0001$) in the field. The number of emerged Striga plants in the screen house was also positively correlated with the number of emerged Striga plants ($r=0.82-0.85$, $p<0.0001$) in the field. We found some inbred lines with many yield loss under heavy infestation. IITA has used inbreeding as a tool for improving resistance to Striga in tropical maize and generated several resistant inbred lines. Some of these lines evaluated for three years exhibited significant differences in the number of emerged Striga plants attached to the roots in pots and in the number of emerged Striga plants on ridges in the screen house. The number of Striga plants attached to the roots in pots was positively correlated with Striga damage symptom rating ($r=0.31$, $p<0.01$) and number of emerged Striga plants ($r=0.76-0.79$, $p<0.0001$) in the field. The number of emerged Striga plants in the screen house was also positively correlated with the number of emerged Striga plants ($r=0.82-0.85$, $p<0.0001$) in the field. We found some inbred lines with many Striga plants attached to the roots supporting few emerged Striga plants. Diallel crosses of selected resistant inbred lines tested in Nigeria and Benin Republic also found some inbred lines that combined positive GCA effects for grain yield with negative GCA effects for damage.

Keywords: Sorghum, varieties, resistance, mechanisms, Striga hermonthica in vitro, open air.

Holoparasitic plants, including Orobanche spp., had lost the photosynthetic ability and the photosynthetic genes have been lost or altered dramatically in some species. Light is not only used as energy for photosynthesis but also as signal to regulate plant development. Whether the photoperception systems are intact or not in the holoparasitic plants is not clear. Since light affects the conditioning and germination of Orobanche minor, part of the photoperception systems seems to still remain in O. minor. There are three families of signal-transducing photoreceptors: red/far-red-light- absorbing phytochromes and UV-A/blue light-absorbing cryptochrome and phototropins in higher plants. We cloned the photochrome and cryptochrome homologous cDNA from O. minor and designated as OmPHYA and OmCRY1, respectively. Both of the deduced amino acid sequences of OmPHYA and OmCRY1 showed about 70% sequence identity with those of the photosynthetic plants. From the Southern blot analysis, it was showed that either gene is a single copy in the genome of O. minor. The expression of the mRNAs of those photoreceptors was quantified by real-time RT-PCR under dark and light-conditions. It was revealed that light affects those mRNA expression levels.

OmPHYA fused with sGFP (OmPHYA:sGFP) was expressed in the protoplasts of Arabidopsis thaliana and onion epidermal cells to observe their subcellular localization. OmPHYA:sGFP was found in the cytoplasm under the dark condition and moved to nucleus after irradiation of far-red light. These results indicate that those photoreceptors still have some functions in O. minor.

Chae, SH et al., Physiol. Plant., 120, 328-37, 2004

The integrated control of Striga recommends several components of which notably the use of resistant varieties. A fundamental question remains always unresolved: which is the demonstration of the resistance? It is then crucial to identify the resistance mechanisms of some varieties in order to improve the breeding outputs. The objective of the study is to rule on the behavior of some sorghum varieties towards S. hermonthica by identifying the mechanisms of resistance. The method of in vitro culture, Lane et al. (1991) was used to appreciate the behavior of every variety under artificial infestation of Striga. This method consists in growing host plants in oblong culture boxes containing GF/A paper and the nourishing solution. The method of outdoors culture in jars containing sterile soil mixed with sorghum and S. hermonthica seeds, confirms the results already obtained with the culture in vitro. Varieties CMDT-45, 97-SB-F5D5-63 and Ntenimissa gave for the test in vitro Striga which stayed in stages of forming haustorium and endophyte. The highest rate of necrosis, 30%, is obtained with Malisor-84-1. The test of opened seeds, confirms the results already obtained with the culture in vitro. Varieties CMDT-45, 97-SB-F5D5-63 and Ntenimissa and Malisor-84-1 can be used in breeding program with the use of the use of their various mechanisms of resistance to S. hermonthica in the creation of new varieties of sorghum.

Keywords: Sorghum, varieties, resistance, mechanisms, Striga hermonthica, in vitro, open air.

S33MT15P00

USE OF INBREEDING AS A TOOL TO IMPROVE RESISTANCE TO STRIGA

A Menkir, J.G. Kling, B. Badu-Apapruku, C.G. Yallou and O. Ibkunle

International Institute of Tropical Agriculture

S33MT15P00

CHARACTERIZATION OF PHOTORECEPTORS FROM OROBNACHE MINOR SM.

A Okazawa1, C Trakulaileamasi1, H Hiramatsu1, E Fukusaki1, K Yoneyama2, T Yasutomo3 and A Kobayashi3

1Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, okazawa@bio.eng.osaka-u.ac.jp; 2Center for Research on Wild Plants, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan, yoneyama@cc.utsunomiya-u.ac.jp

Studies on the host range of Orobanche ramosa L. among some cultivated and wild grown plant species

J R Qasem and C L Foy

Department of Plant Protection, Faculty of Agriculture, University of Jordan, Amman, Jordan, e-mail: qasem@ju.edu.jo; Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, USA, e-mail: cfoy@vt.edu

Harry Boomer

<harbo.boomer@wur.nl>
A field survey carried out during the period from 2002 to 2003 revealed the presence of *Osiris alba* L., a root hemi-parasitic weed of Santalaceae on 23 plant species belong to 14 botanical families in the central part of Jordan. Host plants including perennial woody herbs, shrubs, forest and fruit trees of high economic importance. New host species were added to our existing knowledge on host list of this parasite. Among the most affected fruit trees are olives (*Olea europea* L.), grapes (*Vitis vinifera* L.), almonds (*Prunus amygdalus* L.) and figs (*Ficus carica* L.), and of forest trees are cypress (*Cupressus sempervirens* L.), stink herb (*Acacia cyanophylla* Lindl), Aleppo pine (*Pinus halepensis* Mill.) and Australian pine (*Casuarina equisetifolia* L.). The distribution of the parasite and its intensity of infestation on different hosts were included. The work present the first record on this parasite and its hosts in the country, and reflects the parasite physiological tolerance and adaptability to different host plants differ in growth habit and physiology, among which certain common weeds or wild species such as thorny burnet (*Sarcopoterium spinosum* (L.) Spach.) may be considered as a potentially high candidates in increasing the infested area in the country. The work casts a lot of doubt on the local farmers awareness of the problem.

<table>
<thead>
<tr>
<th>S33MT15P00</th>
<th>NATURAL TOLERANCE OF CUSCUTA SPP. TO HERBICIDES INHIBITING AMINO ACID BIOSYNTHESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Nadler-Hassar1; DL Shaner2; B Rubin3; S Nissen1</td>
<td></td>
</tr>
</tbody>
</table>

1BSPM dept, Colorado State University, Fort Collins, CO, nhtalia@lamar.colostate.edu; snissen@lamar.colostate.edu; dale.shaner@ars.usda.gov; 2H H smith Institute of Plant Sciences and Genetics, the Hebrew University of Jerusalem, Rehovot, Israel, rubin@agri.huji.ac.il

Cuscata spp. are non-specific above-ground holoparasites that can cause significant yield reductions. Control of this parasite is difficult, but herbicide resistant crops might be used to manage Cuscata spp. Assays with isolated *C. campestris* segments indicate that two key enzymes in the biosynthesis of amino acids (acetolactate synthase and 5-enolpyruvylshikimate-3-phosphate synthase) are present in the parasite. Dose response assays on Cuscata spp seedlings in the absence of a host showed that *C. campestris*, *C. gronovii* and *C. subenclusa* were much more tolerant to glyphosate then the seedlings of sorghum and RR canola. *C. campestris* seedlings were also tolerant to imazamox but not to glufosinate. In the greenhouse, *C. campestris* was unaffected by glufosinate while growing on glufosinate resistant canola but glyphosate and imazamox inhibited the growth of the parasite growing on glyphosate and imidazolinone resistant canola. However, the parasite recovered after 3 weeks, suggesting that it is tolerant to these herbicides.

<table>
<thead>
<tr>
<th>S33MT15P00</th>
<th>SENSITIVITY OF SORGHUM VARIETIES TOWARDS STRIGA ASIATICA AS INFLUENCED BY NITROGEN, POTASSIUM AND MOISTURE REGIMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Tesfamichael1; C F Reinhardt1 and S De Meillon2</td>
<td></td>
</tr>
</tbody>
</table>

1Department of Plant Production and Soil Science, University of Pretoria, Pretoria 0002, South Africa, E-mail es1275512@tuks.co.za; 2Professor, Department of Plant Production and soil sciences, University of Pretoria, Pretoria 0002, South Africa, E-mail creinhardt@bioagric.up.ac.za

Striga asiatica (L.) Kuntze has the potential to reduce almonds (*Prunus amygdalus* (L.) Moench) yields by up to 100%. Sorghum varieties that are resistant both to *Striga* and moisture stress is of prime interest in sorghum production. The objectives of this study were: (1) to screen selected sorghum varieties for *Striga* resistance, and (2) to assess varetial responses to *Striga* in relation to soil moisture regime, N and K supply. Following screening in a pot experiment, employing a soil naturally infested with *Striga*, the nine sorghum varieties were categorized as resistant, tolerant or susceptible. One variety representing each of these categories was employed in subsequent pot experiments to determine the influence of soil moisture (field capacity and 50% f.c.), nitrogen (0 and 200 kg/ha) and potassium (0 and 200 kg/ha) on *Striga* parasitism of sorghum. A completely randomized design was used in these factorial pot experiments conducted under controlled conditions. Significant sorghum yield loss occurred due to the combined effect of moisture stress and *Striga*. Application of N significantly reduced the parasite population, in contrast to K application, which significantly increased *Striga* density. At 100% f.c., *Striga* density and its effect on sorghum were significantly less than at 50% f.c. These findings should be validated under field conditions, and the mechanism through which K increases parasite density should be researched.

<table>
<thead>
<tr>
<th>S33MT15P00</th>
<th>EFFECT OF GROWTH MEDIUM AND METHOD OF APPLICATION OF FUSARIUM OXYSPORUM ON INFESTATION OF SORGHUM BY STRIGA HERMONTICHA IN BURKINA FASO</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Yonli1, H. Traoré1, D.E. Hess2, A.A. Abbasher3, and I.J. Boussim4</td>
<td></td>
</tr>
</tbody>
</table>

1Institut de l’Environnement et de Recherches Agricoles, 04 B.P. 8645 Ouagadougou 04, Burkina Faso, htraore@hotmail.com; 2Agronomy Department, Purdue University, W. Lafayette, IN, USA, dhess@purdue.edu; 3Abu Haraz College, University of Gezira, Wad Medani, Sudan; 4Université de Ouagadougou, Unité de formation et de recherche en sciences de la vie et de la terre, B.P. 7021, Ouagadougou, Burkina Faso

Striga hermonthica is an important constraint in sorghum, the major crop of Burkina Faso. A two-year (1997-1998) study was conducted at Kouâré, Burkina Faso, to investigate effect of growth medium and application method of *Fusarium oxysporum* isolate 4-3-B to control *Striga hermonthica*. In 1997, growth medium and isolate 4-3-B delayed striga emergence by nine days. Isolate 4-3-B reduced emerged striga number by 33% compared to treatments without *Fusarium*. In 1998, striga emergence was delayed by 13 days by growth medium and *Fusarium*. The fungus reduced the number of emerged striga by 27 % and, as a result, sorghum straw and grain yields were significantly improved by 10% and 38% respectively. *F. oxysporum* isolate 4-3-B could contribute to more effective integrated striga management in the West African Sahel.

Key words: *Striga hermonthica*, bio-control, *Fusarium oxysporum*, inoculum, application method.
S33MT15P00

EFFECTS OF NUTRIENTS ON THE PRODUCTION OF GERMINATION STIMULANTS

K Watanabe1, R Matsuki1, H Sekimoto1, Y Takeuchi2 and K Yoneyama2

1Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan, fragrance0917@yahoo.co.jp; hitoshi@cc.utsunomiya-u.ac.jp; 2Center for Research on Wild Plants, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan, takeuchi@cc.utsunomiya-u.ac.jp; yoneyama@cc.utsunomiya-u.ac.jp

Broomrapes (Orobanche spp.) are root holoparasites causing enormous damage to agricultural production in large parts of the world. Seeds of broomrapes germinate only when they perceive germination stimulants produced by and released from the host and non-host roots. Broomrapes prevail on nutrient-deficient soils and their emergence is suppressed by the application of fertilizers. In fact, we have shown that nutrients did affect germination stimulation activity of root exudates of red clover (Trifolium pratense L.), a host of clover broomrape (O. minor Sm.). However, nutrients may affect the production of germination inhibitors as well. In the present study, effects of nutrients (N, P, K, Ca, and Mg) on stimulant production were examined with red clover plants grown hydroponically. Among the stimulants produced by red clover, orobanchol was quantified using the HPLC / tandem mass spectrometry (LC/MS/MS).

S33MT15P00

SMICRONYX CYANEUS GYLL. (COLEOPTERA: CURCULIONIDAE): A NEGLECTED NATURAL ENEMY OF THE PARASITIC WEED OROBANCHE

N. Zermane

Institute of Crop Science, University of Kassel. 37 213 Witzenhausen, Germany; Email: zermane@wiz.uni-kassel.de; nzermane@hotmail.com

Natural enemies of Orobanche spp. have received an increasing attention in recent decades and extensive studies on their occurrence and their potential as biocontrol agents have been conducted. However, very scarce information is available regarding the weevil Smicronyx cyaneus GYLL. (Coleoptera: Curculionidae) although its importance as Orobanche stem/seed feeder. In attempts to fill this knowledge gap, investigations on the weevils’ occurrence and distribution, its behaviour and impact under natural conditions have been carried out in faba bean production in northern Algeria and Tunisia. Studies on the weevil’s behaviour were accomplished by regular monitoring and observations of broomrape plants in the field as well as in the laboratory. Collections of O. crenata samples around the capital Algiers have been done in 1996. Further, extensive field surveys were carried out in 2001 in Northern Tunisia. Stems and spikes of the sampled Orobanche plants were examined separately for the presence of the weevil. In Tunisia, S. cyaneus was found in 19 out of 21 surveyed locations. Of 315 broomrape plants examined 50.3% were infested with predominance of stem infestation. Infestation of capsules ranged from 0 to 19.3%, however, the level can be much higher since it was difficult to attribute infestations to Smicronyx or to Phytomyza orobanchia Kalt. (Diptera: Agromyzidae) when larvae have already left the seed capsules. In Algeria, 52% of the examined broomrapes were attacked with an average of 16.1% of capsules infested per plant. S. cyaneus reduced the seed production of O. crenata by 14.3% and significantly decreased the growth of the infested broomrapes compared to healthy plants. The present study provided useful information aimed to improving knowledge on the potential use of S. cyaneus as biocontrol agent for Orobanche spp.

S33MT15P00

CALLUS PRODUCTION OF PARASITIC WEED OROBANCHE AND ITS NOVEL ASEPTIC INFECTION ON HOST ROOTS

W J Zhou1, W J Song1, K Yoneyama2, Y Takeuchi2 and D M Joel3

1College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China, wzhou@zju.edu.cn; 2Center for Research on Wild Plants, Utsunomiya University, 321-8505, Japan, yoneyama@cc.utsunomiya-u.ac.jp; 3Department of Phytopathology and Weed Research, ARO, Neve Ya’ar Research Center, 30095, Israel, dmjoel@volcani.agri.gov.il

Root parasites of the genus Orobanche are serious weeds in agriculture. This paper describes the development of an in vitro culture system and completely aseptic infection of host roots using calli of O. ramosa, O. aegyptiaca and O. minor. Better callus inductions were obtained from BS culture media with 3.6% PDA, vitamins, 3% sucrose, 600 mg/L casein, 5% coconut water, and various hormones. GA3 increased the percentage of callus formation. With 2.4-D more calli were induced after adding kinetin, but all media containing 2.4-D induced the soft undifferentiated calli. Hard and much differentiated calli with root-like protrusions were obtained with kinetin containing medium. Shoot meristem initiated at the distal end of O. ramosa callus on MS medium containing GA3. A requirement for infection was the differentiation of root-like protrusions from the callus, which were developed under the influence of 0.5-1.0 mg/L IAA, and of 0.2 mg/L NAA with 5.0 mg/L kinetin. These protocols produced root protrusions and pad-like structures that resembled attachment organs of Orobanche, and proved effective in parasitizing host roots. Direct contact with the medium inhibited haustorium development and prevented infection. To overcome this problem we isolated certain root portions from the medium by inserting thin glass plates under the host roots. Calli were then placed on the raised root portions and successfully infected the roots, leading to the development of young Orobanche plants with normal vascular systems that directly connected to the host.

S33MT15P00

CALLUS PRODUCTION OF PARASITIC WEED OROBANCHE AND ITS NOVEL ASEPTIC INFECTION ON HOST ROOTS

W J Zhou1, W J Song1, K Yoneyama2, Y Takeuchi2 and D M Joel3

1College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China, wzhou@zju.edu.cn; 2Center for Research on Wild Plants, Utsunomiya University, 321-8505, Japan, yoneyama@cc.utsunomiya-u.ac.jp; 3Department of Phytopathology and Weed Research, ARO, Neve Ya’ar Research Center, 30095, Israel, dmjoel@volcani.agri.gov.il

Broomrapes (Orobanche spp.) cause great damage to crop production, and their seeds have special germination requirements including pre-treatment in a warm moist environment for several days (conditioning) prior to the exposure to germination stimulants (GRs, etc.). Experiments were conducted to investigate the germination response and viability of parasitic Orobanche seeds subjected to the treatments of various temperatures (13, 18, 23 and 28) and plant growth regulators during seed conditioning. The highest germination percentages (64.7%, 77.9% and 53.1%) were observed respectively in O. aegyptiaca, O. minor and O. ramosa seeds conditioned at 18 for 7 days following terminal germinated at constant 18 in the dark. GA3 (30-100 mg/L), norflurazon and fluridone (10-100 mg/L), and brassinolide (0.5-1.0 mg/L) increased seed germination, while uniconazole low as 0.01 mg/L significantly reduced germination rates of three Orobanche spp. The promotive effect of GA3 and norflurazon (10-100 mg/L) inhibited effects of uniconazole (0.05 mg/L) were evident even when they were treated for 3 days. Germination of Orobanche seeds was much lower when the unconditioned seeds immediately exposed to 105 M GRs. This GRs induced inhibition, however, was alleviated or even eliminated by the inclusion of GA3 or norflurazon (10-50 mg/L). On the other hand, the inclusion of uniconazole could aggravate this inhibition, particularly in the case of O. ramosa where no seeds were germinated when applied with 0.1 mg/L uniconazole.
Minimisation of pesticide use in New Zealand’s plantation forests is critical to meet green certification requirements and public expectations in relation to environmental impacts and human health effects. With an increasing number of companies seeking or achieving Forest Stewardship Council (FSC) certification, this issue is of critical importance to the New Zealand forestry industry. VMAN is a decision support system that can help to minimise herbicide rates on moist, fertile sites in the Central North Island of New Zealand. VMAN uses a stochastic simulation model. It combines models of weed and tree growth, weed and tree competition and herbicide / weed dose-response, to estimate weed height and cover and tree height and diameter through time. It requires the user to input some basic forest establishment, tree growth and weed growth parameters. VMAN then allows the user to compare different weed control regimes based on tree growth and financial estimates, to assist in deciding on which vegetation control options should be used.

Key words: decision support system

THE DYNAMICS AND MECHANISMS OF CROP TREE COMPETITION BY WOODY AND HERBACEOUS SPECIES

P Balander, C Collet, P E Reynolds and S M Zedacker

1Cemagref, Team of applied Ecology of Woodlands, Clermont- Ferrand Regional Centre, 24 avenue des Landais, BP 50085, F- 63172 Aubière Cedex, France, philippe.balandier@cemagref.fr; 1INRA, Laboratoire d’Etudes des Ressources Forêt-Bois, UMR INRA-ENGREF 1092, F-54 280 Championvex, France, collet@nancy.inra.fr; 2NRCan, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, Ontario, P6A 2E5, Canada, preynold@nrcan.gc.ca; 3Department of Forestry (0324), College of Natural Resources, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA, zedaker@vt.edu

Plant interactions can be defined as the ways plants act upon the growth, fitness, survival and reproduction of other plants, largely by modifying their environment. These interactions can be positive (facilitation) or negative (competition or exploitation). During plantation establishment or natural forest regeneration after a disturbance, high light levels and sometimes the increased availability of water and nutrients favor the development of opportunistic, fast-growing herbaceous and woody species. In most climates, this vegetation is favored and captures resources at the expense of crop trees. As a consequence, the growth and survival of crop trees can be dramatically reduced. Although the effects of this competition are well documented, the physical and physiological mechanisms of competition are not. The decreases in the availability of light, water and nutrients and the physiological responses of crop trees to resource depletion and microclimate modification are not well understood. Moreover, the competition process is never in steady state in time or space. The growth response of the crop to different competitors modifies resource availability and allocation. Changes in the intensity and orientation of competition results, and forest composition (relative dominance) can change. In addition, indirect interactions such as changes in predators, insectivores, pathogens and the microbiome may have significant impacts and are much less studied. Understanding these dynamics is fundamental to improve vegetation management in forests.

EARLY PLANT COMPETITION CONTROL EFFECTS ON WOOD QUALITY OF 15 YEAR OLD LOBLOLLY PINE IN THE SOUTHERN U.S.A.

Alexander Clark III*, Richard F. Daniels* and James H. Miller*

1USDA Forest Service, Southern Research Station, Athens, Georgia 30602-2044, aclark@fs.fed.us; *Warnell School of Forest Resources, University of Georgia, Athens, Georgia, Athens 30602-2152, danielrf@forestry.uga.edu; 2 USDA Forest Service, Southern Research Station, Auburn, Alabama 36849-5418, jlmiller019@fs.fed.us

Forest plantations in many parts of the world are established increasingly using herbaceous and woody vegetation control to enhance growth, while little is known about the effects on wood quality. A factorial study was installed at 13 southern U.S.A. locations in 1984 to examine growth, wood properties, and stand dynamics of loblolly pine (Pinus taeda L.) plantations established with complete control of woody and/or herbaceous competition during the first 3 to 5 years as compared to no control. After 15 years, the most intensive treatment of woody-plus-herbaceous control increased pine merchantable volume per hectare by an average of 30-148% compared to no competition control. Increment cores, 12-mm in diameter, were collected in year 15 from 36 trees in each of the four treatments from each of the 13 locations. X-ray densitometry was used to determine annual growth, proportion of latewood, and specific gravity (SG) of the earlywood, latewood, and annual ring. Woody-plus-herbaceous control did not significantly reduce SG of earlywood or latewood, and did not significantly affect the proportion of latewood in the annual ring. Overall, wood volume was increased while SG of ring components where unchanged. The significant increases in growth from competition control mainly occurred during juvenile wood formation in years 1-5 and thus increased the diameter of the juvenile wood core by an average of 24%. As a result of the increased juvenile core, the basal area weighted proportion of latewood decreased 10% and weighted SG decreased 4%. Growth gains substantially offset these per tree decreases.

EFFECTS OF SOME ENVIRONMENTAL FACTORS ON THE GERMINATION OF SILIYBUM MARIANUM GAERTNER SEEDS

P Montemurro, V Cavallaro, M Fracchiolla and P Viggiani

1Dipartimento di Scienze delle Produzioni Vegetali -University of Bari (Italy), Via Amendola n. 165/A – Bari (Italy), p.montemurro@agr.uniba.it; Dipartimento di Scienze e Tecnologie Agroambientali – University of Bologna (BA), V. Le Fanin, 44 Bologna (Italy)

Silybum marianum Gaertner is spreading in many crops of Southern Italy. There are few herbicides effective against this weed. Information about its biology are very important to set up control strategies. Three trials on the germination of S. marianum seeds, harvested in Southern Italy, were carried out. In two trials seeds were placed in an incubator to determine the effects of light and osmotic stress on the germination. In the first trial the effects of different temperature (15°C and 25 °C constant, 15°C x 8 h/25°C x 16 h and 15°C x 16 h/25°C x 8 h) and light (darkness or light per 16 hours) conditions were tested. In the second one, the seeds were exposed to different osmotic stresses (0; -0.2; -0.4; -0.6; -0.8 and -1 MPa) obtained using PEG 8000 water solutions. In the third trial seeds were placed in pots filled with sandy soil and buried at increasing deepness (0 – 3 – 6 – 9 – 15 cm).

The results show that germination:

a) was the highest with constant temperatures of 25°C or 30°C and with alternate temperatures of 25°C/15°C for 8 and 16 hours respectively;

b) was affected by light;

c) decreased significantly just at –0.2 Mpa and was completely inhibited at -0.8 Mpa.

The emergence was reduced when seeds were buried at more than 6 cm.

These first results could suggest integrated control practices: false sowing combined with irrigation could decrease the soil seed bank; ploughings deeper than 10 cm to inhibit seed emergence.
Herbicides are a commonly used forest vegetation management tool, but off-target spray deposition and drift are significant environmental concerns. Therefore, it is essential that herbicides be applied in a responsible manner, with a clear understanding of how the selected application methods affect the environment and influence efficacy and operational efficiency. SpraySafe Manager (SSM) is an aerial application decision support system designed to meet these needs. It can link predictions of spray deposition and drift with biological response models. Version 2 of SSM (SSM2) is run from within Arc View, a geographic information system (GIS). For a given set of inputs that describe the aircraft, the application characteristics and the prevailing meteorology, the system predicts spray deposition within the target area and drift beyond the spray block boundaries. The system can be used for a variety of applications. For example, in a pre-spray analysis and for a given set of operating conditions, SSM2 can define the proportion of the spray block that can be sprayed without causing significant offsite drift. In a post-spray analysis, SSM2 uses information on the actual aircraft position, taken from a global positioning system, and actual weather and operating conditions to calculate deposition inside and outside of the target area. The GIS interface enables easy interpretation of results with different levels of deposition or critical thresholds identified using separate colours or contours.

Methods of soil tillage and harvest residue management (site preparation) that reduce the development of competitive vegetation have the potential to lower vegetation control costs. The objectives of this research were (i) to study the interaction between site preparation and vegetation growth and the influence of these interactions on early survival and growth of Pinus patula. Eight site preparation treatments were tested in combination with or without vegetation control. The site preparation treatments included ripping, chopper-rolling, ripping and chopper-rolling, and pitting in residues which were either burned or not burned. Tree survival and growth, vegetation abundance and soil and foliar nutrient levels were recorded. At four years, none of the different methods of site preparation had a significant effect on any of the measured parameters. Vegetation control had a significant effect on tree growth from the end of the first growing season. Differences in foliar nutrient levels were only detected between the weedfree and weedy treatments. Vector analysis indicated that nutrient content, rather than concentration had increased in the weedy treatment, suggesting that growth in these treatments was most likely inhibited as a result of limited moisture availability and its effect on nutrient uptake. Theses results suggest that irrespective of the method of site preparation, vegetation control is critical for the successful re-establishment of pine plantations.
For the developing of forest region of Arsanjan a number of seedlings of Pistacia atlantica are produced in Arsanjan nursery every year. To determine the importance of weeds in this nursery, weeds were collected by a quadrat of 50 by 50 cm in two successive years (1998-99). Weed samplings were randomly done six times in each plot. The collecting and identifying of weeds (flora) in Pistacia atlantica was undertaken for Arsanjan nursery. Three of these species, Taraxacum officinale, Cardaria draba, and Portulaca oleracea L. containing more than 50 percent coverage were the prevailing weeds. The result showed that the weed species of Asteraceae family which grow in Pistacia nursery are as important as those of other regions and have conformity with distribution of the Asteraceae family through the world. This may show a relation between the seedlings and the growth of weeds.

Species and Families

<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pistacia atlantica</td>
<td>Pistaciacae</td>
</tr>
<tr>
<td>Cardaria draba (L.) Desv.</td>
<td>Brassicaceae</td>
</tr>
<tr>
<td>Rabbanus papantrum (L.)</td>
<td>Brassicaceae</td>
</tr>
<tr>
<td>Chenopodium album L.</td>
<td>Chenopodiaceae</td>
</tr>
<tr>
<td>Convolvulus arvensis L.</td>
<td>Convolvulaceae</td>
</tr>
<tr>
<td>Cyperus sp.</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Euphorbia helioscopia L.</td>
<td>Euphorbiaceae</td>
</tr>
<tr>
<td>Malva neglecta Wallr.</td>
<td>Malvaceae</td>
</tr>
<tr>
<td>Avena ludoviciana Durieu.</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Cymodon dactylon L.</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Portulaca oleracea L.</td>
<td>Portulacaeeae</td>
</tr>
</tbody>
</table>

Result showed that 12 weed species which belong to 10 families existed in Pistacia atlantica nursery of Arsanjan. Three of these species, Taraxacum officinale, Convolvulus arvensis L. and Portulaca oleracea L. containing more than 50 percent coverage were the prevailing weeds. The result showed that the weed species of Asteraceae family which grow in Pistacia nursery are as important as those of other regions and have conformity with distribution of the Asteraceae family through the world. This may show a relation between the seedlings and the growth of weeds.

INTEGRATION OF CROPPING PRACTICES AND HERBICIDES FOR SUSTAINABLE WEED MANAGEMENT

1. Agronomy and Agri-Food Canada, PO Box 3000, Lethbridge, AB T1J 4B1 Canada, blackshaw@agr.gc.ca, molnar@agr.gc.ca, moyer@agr.gc.ca;
2. Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1 Canada, harkerk@agr.gc.ca, claytong@agr.gc.ca; 3. Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2 Canada, beckle@agr.gc.ca

Agronomic practices have been studied individually for their effects on weed populations and crop yield. However, few studies have determined the potential benefits of simultaneous use of several desirable crop production practices especially when combined with timely herbicide use. A four-year field experiment was conducted under zero-till conditions at three sites in Canada to determine the combined effects of seed date (early or normal), seed rate (1X or 1.5X), fertilizer timing (fall- or spring-banded), and in-crop herbicide rate (0.5X, 1X, or 1.5X) on weed management and crop yield. These factorial treatments were applied to a wheat-canola rotation at two sites and to a barley-field pea rotation at one site. An increase in crop seed rate was the most consistent positive agronomic practice in terms of weed management and crop yield. Delayed seeding often resulted in lower in-crop weed densities due to more weeds being killed by preseed glyphosate. However, crop yields were rarely higher, and sometimes lower, with delayed seeding in our short growing season environment. Fall- compared with spring-applied fertilizer sometimes increased weed densities but overall differences were small. Weed control and crop yields were often similar with 0.5X and 1X rates of in-crop herbicides. Weed seedbank data taken at the conclusion of the four-year study indicated that weed seed numbers were not greater with the 0.5X than with the 1X herbicide rate when applied within a competitive cropping system. This study demonstrates the potential to effectively manage weeds and maintain high crop yields by combining several good agronomic production practices with timely but limited herbicide use.
S35MT10P04
LOW-RATE SPLIT-APPLIED (MICRO-RATE) HERBICIDE TREATMENT CONCEPT TO OPTIMIZE WEED CONTROL
A G DEXTER1, C G MESSERSMITH1 and K A HOWATT1

1Department of Plant Sciences, North Dakota State Univ., Fargo, ND 58105-5051, c.messersmith@ndsu.nodak.edu

The low-rate split-applied (micro-rate) herbicide treatment concept is based on multiple treatments of small weeds to minimize weed competition and economic inputs for weed control. Some principles of the micro-rate concept are: a) start with a weed-free seedbed, apply the first herbicide treatment to newly emerged weeds, and apply subsequent treatments when new seedlings are emerging after the previous treatment; b) utilize the most effective herbicide available on each target weed at one-eighth to one-third of the full registered use rate; c) mix herbicides with different modes of action to provide broadspectrum weed control and reduce the risk of selecting for resistant biotypes; d) use the best available adjuvant to optimize efficacy of all herbicides applied, and e) optimize the timing and spray coverage to attain maximum efficacy from the low herbicide rates. This concept was pioneered for weed control in sugarbeet in Minnesota and North Dakota, USA, and currently can include up to six herbicides applied concurrently, including cloethidion, cyclopyridinyl, ethofumesate, desmedipham, phenoxyphenyl, and trifluralin, and methylated seed oil adjuvant, which are applied three to five times. The micro-rate concept is most likely to fail when weeds are too large at first treatment or the time interval between sequential treatments is too long. The low-rate split-applied concept also has been used for wild oat (Avena fatua L.) control in wheat, which enhanced both weed control and wheat yield, and nightshade (Solanum spp.) control in soybean.

S35MT10P05
COMBINING UREA AND HERBICIDE SPRAY AND ITS CONSEQUENCES ON WHEAT YIELD QUALITY AND QUANTITY
M.Akhavan , M.Bazoband and M.Faravani
Khorasan Agricultural Research Center
P.O.Box :9735-488 – Mashhad- Iran
Email:majid_akhavan2003@yahoo.com

Combining spray practices where herbicides and liquid fertilizer are two main components, may result in lower production costs and higher quality. In order to study the possibility of combining urea and some conventional herbicides in wheat crop, the present investigation was carried out at the farm of Khorasan Agricultural Research Center during growing season of 1999-2001. The experiment were laid out in randomized complete blocks design with two factors, A/method of urea top-dress application (liquid spray and granule) and B/herbicides at nine level i.e. different graminicides and broad leaf killers. Wheat local variety of Falat was used. 100 Kg.ha¹ out of 300 Kg. ha¹ Urea, which was recommended, based on soil analysis were applied at the sowing time and the rest was applied as top dress. All eighteen treatments were replicated three times. Yield and yield components as well as number and dry matter of weeds species-wise were registered. Results revealed that number of Fumaria sp., Convolvulus arvensis, Polygonum, Salvia sp. and Chenopodium album were significantly decreased by herbicide application while combining urea and herbicides could significantly improve biological yield, yield and protein percentage about 2.05 ton.ha⁻¹, 1 ton.ha⁻¹ and 1.14% respectively. It may be concluded that rapid absorption of nitrogen coinciding weed dumping through herbicides could decline competition while increasing quality of yield.

Key words: Weed, nitrogen and wheat

S35MT10P06
STUDIES ON POST-EMERGENT CHEMICAL WEED CONTROL
IN WHEAT (Triticum aestivum L.).
Muhammad Ishfaq Khan, Gul Hassan, Ijaz Ahmad Khan and Imitiaz Khan
Department of Weed Science, NWFP Agricultural University, Peshawar (Pakistan) 25130
Cupids_wazir@yahoo.com

For the efficacy of different herbicides for controlling weeds in wheat, an experiment was conducted at Malkandher Research Farm, NWFP Agricultural University Peshawar, during Rabi season 2002-03. The experiment was laid out in randomized complete block design with 5 replications. The experiment comprised of 8 herbicides and a weedy check. The herbicidal treatments were post-emergence applications of Rocket + Tribenuron-methyl @ 0.27 + 0.27 kg a.i ha⁻¹, Rocket 75 WDG + Tribenuron-methyl 75 WDG @ 0.37+0.37 kg a.i ha⁻¹, Rocket 75 WDG + Isoproturon 50 WP @ 0.046 + 0.741 kg a.i ha⁻¹, Am 40 WP @ 0.296 kg a.i ha⁻¹, Logran Extra 64 WDG @ 0.158 kg a.i ha⁻¹, Buctril-M 40EC @ 0.494 kg a.i ha⁻¹ and Affinity 50 WDG @ 0.016 kg a.i ha⁻¹. Ghaznavi-98 variety of wheat was sown in a plot size of 6 x 2 m² during third week of October 2002. The data were recorded on tillers plant⁻¹, 1000 grains weight (g), biological yield (t ha⁻¹), and grains yield (t ha⁻¹). For controlling weeds Affinity proved to be the best, giving only 13.80 as compared to 253.0 weeds m⁻² in weedy check plots. Similarly, the maximum grain yield (4.6 t ha⁻¹) was recorded in Affinity 50WDG. It was followed by plots receiving Buctril-M 40EC and Logran Extra 64 WDG with grain yield of 4.2 and 4.0 t ha⁻¹, respectively. Minimum yield 2.8 t ha⁻¹ was recorded in weedy check plots.

Key words: Chemicals, weeds, wheat

S35MT10P07
ASSESSMENT OF YIELD LOSSES DUE TO CROP-WEED COMPETITION IN PEANUT (Arachis hypogaea) IN EASTERN CENTRAL INDIA
S.R. Patel¹, N. Lal² and D.S. Thakur³

1Dept. of Agrometeorology, Indira Gandhi Agricultural University, Raipur- 492 006 (C.G.) India. Email-srpatel@ yahoo.com
2Sub Divisional Officer, Dept. of Agriculture, Jagdalpur 494 001(C.G.) India
3S.G. College of Agriculture and Research Station, Jagdalpur 494 005(C.G.) India

Peanut (Arachis hypogaea L.) is an important oilseed crop grown during rainy season in eastern part of Central India under rainfed condition. Among different agronomic practices, weed infestation is one of the major limiting factors influencing the productivity of peanut. First 4-5 weeks are most important in peanut and many workers have reported yield loss up to 76 per cent due to crop-weed competition. During the rainy season timely weeding is a tedious job due to continuous rains and scarcity of labourers. Pre-emergence application of herbicides proved their usefulness to reduce the crop-weed competition at early stage, but the second flush of weeds emerged and competes with the crop. Under such situation the concept of integrated weed management has immense scope in peanut production. If this experiments were carried out to assess the yield losses due to crop-weed competition. The predominant weed species observed in the experimental field were Celosia argentea, Echinochloa colona, Echinochloa crus-galli, Cydonon dactylon and Cynara sp. It was observed that the pre-emergence application of oxyfluorfen @ 0.40 kg/ha appreciably reduced the crop weed competition and showed maximum weed control efficiency (87.9%) however it was similar with its dose of 0.20 kg/ha. Fluchloralin and pendimethalin 1.0 kg/ha showed lower weed control efficiency than that of oxyfluorfen. Maximum pod yield was harvested in weed free plots followed by oxyfluorfen @ 0.20 kg/ha whereas the minimum yield was obtained in weedy check. Uncontrolled weed growth reduced peanut yield to the tune of 50 per cent.
The obligate root-parasitic flowering plants, Striga spp., are a major constraint to crop production in sub-Saharan Africa. Striga hermonthica constitutes the most important biological constraint to the production of maize, sorghum, pearl millet, and, more recently, upland rice in the savanna agroecological zones of West and Central Africa (WCA). S. gesnerioides is an important pathogen of cowpea, especially in the northern Guinea and Sudan savannas and the Sahel. Farmers in WCA traditionally manage Striga infestations by physical destruction (hoe-weeding and hand-pulling), long fallow periods, crop rotation, mixed cropping and application of organic and inorganic fertilizers. The IITA and its partners in WCA are developing and promoting an integrated Striga management (ISM) programme. Important components of the programme include, planting Striga – free host crop seeds; rotating non-host trap crop cultivars (specifically selected for efficacy to stimulate suicidal germination of seeds of the Striga strain prevalent in the area of intended use) with host crop cultivars; growing Striga-resistant/tolerant host crop cultivars; late weeding to destroy Striga before seed set; appropriate use of fertilizers (especially those that enhance soil suppressiveness); and biological control with fungal pathogens of Striga, rhizobacteria pathogenic to seeds or suppress their germination, and ethylene-producing bacteria. In promoting farmers’ adoption of technology components acceptable to them, IITA and its partners are adopting farmer-participatory learning approach, including training farmers on Striga biology/ecology, testing of control options in farmer – managed trials and demonstration plots, and stakeholder participatory scaling out and up processes.

ECOLOGICAL MANAGEMENT OF STRIGA IN CEREAL BASED CROP PRODUCTION SYSTEMS IN NORTHERN NIGERIA

N A Gworgwor

Department of Crop Production, Faculty of Agriculture, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno state, Nigeria. E-mail: gworgwor@yahoo.com

In a series of field trials conducted between 1995 and 1998 at the University of Maiduguri, Nigeria, trap crops (groundnut, bambara-groundnut and sesame) and seed dressing with brine (NaCl) were used to investigate the effectiveness of these materials on the management/control of Striga hermonthica in sorghum and millet. In the sorghum-groundnut trial, the results show that the intercropping of sorghum with groundnut significantly reduce Striga infestation up to 50% in sorghum in both years, but without significant increase in yield. In the sorghum-bambara trial, alternating stands of sorghum and bambara groundnut within the same row reduced Striga shoot count in all the varieties with a range of 51 – 91% reduction than in alternate rows or sole sorghum of each variety significant increase in yield in all the varieties compared with their soles. In the millet-sesame trial, the 1:1 alternate stand on the same row cropping pattern significantly reduced Striga infestation more than the millet-sesame same stand cropping pattern, especially with ICV-18-9116 variety in both years where zero Striga emergence was observed. In the seed dressing trial, with brine, it shows that irrespective of the sorghum variety, the use of brine at 1.5 M was found optimal for controlling Striga emergence resulting in increased crop growth and grain yield. In conclusion, it is evident that the farmers in this dried semi-arid ecological zone of Nigeria have a choice of any option of a control strategy to achieve a good degree of Striga management/control in their sorghum or millet based cropping system. Such options also offer a long term effect of depleting Striga seed bank in the soil and such options are ecologically sound and accessible to the farmers.
Sorghum bicolor pot experiment, treatment combinations of three sorghum control of the weed requires integrated control practices. Objectives: to

S35MT15P05
PROSPECTS AND LIMITATIONS FOR STRIGA ASIATICA CONTROL IN SORGHUM/DESMODIUM INTERCROP
T. Tesfamichael1, G. F. Reinhardt2 and S. De Meillon2
1Department of Plant Production and Soil Science, University of Pretoria, Pretoria 0002, South Africa, E-mail
s217257212@tuks.co.za
2Department of Plant Production and Soil Science, University of Pretoria, Pretoria 0002, South Africa, E-mail
crenhardt@bioagric.up.ac.za

Sorghum bicolor (L.) Moench is often severely restricted by Striga asiatica (L.) Kurtze parasitism, and successful management of the weed requires integrated control practices. Objectives: to investigate the influence of Desmodium intortum exudates on Striga seed germination, and to determine optimum timing of Desmodium establishment, and population density, for effective control of Striga in a sorghum/Desmodium intercrop system. In a pot experiment, treatment combinations of three sorghum varieties; three transplanting dates for Desmodium; in the presence or absence of Striga, were employed. In the second pot experiment, four sorghum/Desmodium intercropping ratios and three sorghum varieties were used. In the laboratory, the effects of different plant parts, leachates and extracts of Desmodium were tested on Striga seed germination. Pot experiment results showed that Striga population varied significantly among sorghum varieties, sorghum/Desmodium intercropping ratios, Desmodium establishment date, and their interactions. Desmodium reduced Striga emergence in sorghum by 100% when intercropped at 1:3 sorghum/Desmodium ratios, and with Desmodium transplanting 50 days prior to sorghum sowing. However, this treatment combination also caused significant reductions in sorghum yield. Compatibility between sorghum and Desmodium was evident at the 1:1 plant ratio. Laboratory results showed that exudates of Desmodium intortum induce sucidal germination of Striga. Segments of Desmodium roots, leachate from live plants, and leachate extracts induced germination of Striga seeds. Findings apparently explain why the practice of Desmodium/sorghum intercropping is effective for controlling Striga asiatica. Further research, especially on the metabolites and mechanisms involved, is warranted.

S35MT15P06
FIELD INOCULATION WITH ARBUSCULAR MYCORRHIZAL FUNGI REDUCES STRIGA PERFORMANCE ON CEREAL CROPS AND HAS THE POTENTIAL TO INCREASE CEREAL PRODUCTION
V.W. Lendzemo1, Th. W. Kuyper2, M.J. Kropff3 and A. van Ast4
1Institute of Agricultural Research for Development. P.O. Box 33
Maroua, Cameroon
vlendzemo@hotmail.com
2Wageningen University and Research Centre, The Netherlands
thom.kuyper@wur.nl
martin.kropff@wur.nl
aad.vanast@wur.nl

The witchweed Striga hermonthica severely affects cereal production in Africa. Severity and intensity of Striga correlate negatively with soil fertility status. Arbuscular mycorrhizal (AM) fungi have been observed to negatively influence Striga performance in pot experiments. The objective of this study was to validate results of the tripartite interactions AM fungi, cereals and Striga obtained under controlled conditions, in the field. Maize and sorghum were grown in the field in north Cameroon during the cropping seasons of 2000 for maize, 2001 and 2002 for sorghum. Both cereals were grown in the presence or absence of Striga seeds, with or without inoculation using a mixed soil inoculum of AM fungi. Infection of maize by Striga resulted in a 20% cob yield reduction. In 2001, Striga infection of sorghum led to a reduction of only 7% of panicle yield whereas in 2002 a significant 26% reduction of panicle yield was obtained. With AM fungi inoculation, a significant reduction (30% and over 50% on maize and sorghum, respectively) in number of Striga shoots was noted. Harvested and dried Striga shoots from AM inoculated plots weighed significantly less: 40% reduction on maize, 48% and 63% reduction on sorghum in 2001 and 2002, respectively. Negative performance of Striga with AM fungi inoculation did not result in significant increase in cereal yield suggesting presence of effective AM propagules that needed boosting early in the cropping season in those fallow fields. Managing AM is an option in integrated management of Striga on cereals for sustainability.

S35MT15P07
PATHOGENICITY OF FUSARIUM SPP ISOLATES AND METABOLITES TO STRIGA HERMONTICA IN BURKINA FASO
D. Yonli1, H. Traore1, D. E. Hess2, O. Ouédraogo3, P. Sereme4
1Institut de l’Environnement et de Recherches Agricoles, 04 B.P. 8645 Ouagadougou 04, Burkina Faso, htraore@hotmail.com; 2Agriculture Department, Purdue University, W. Lafayette, IN, USA, dhess@purdue.edu.

Striga hermonthica is an important constraint in cereal crops, mainly sorghum, the major crop of Burkina Faso. The objectives of this study were to identify Fusarium spp isolates effective against S. hermonthica, to evaluate their pathogenicity and to determine methods of application. Of 51 Fusarium spp isolates evaluated in vitro, 14 were effective to control S. hermonthica. These 14 isolates were evaluated for their effects on Striga germination and their effectiveness to control Striga. Application of spores of Fusarium pp isolates 150-M, 5-Kou, 31-Kom, 6-Fa, 34-Fo, 32-Or and 125b-Za reduced Striga germination by 78.06% to 87.62% compared to the control. The study showed that at the rate of 33 mg mL⁻¹, metabolites of isolates 5-Kou, 6-Fa, 34-Fo and 125b-Za were effective to prevent Striga germination. However, isolates 14b-O, 150a-M and 32-Or expressed their effectiveness at 67 mg mL⁻¹. Striga death rates ranged from 17% to 37% between 14 and 28 days after inoculation of spores of Fusarium spp isolates 34-Fo and 5-Kou. Isolates 5-Kou and 34-Fo showed a reduction of Striga biomass by 77.65% and 83.58% respectively. Sorghum yield was improved by 84.23% and 98.88% respectively with isolates 6-Fa and 34-Fo in comparison with the control without Striga. This study showed the importance to identify toxins responsible of Striga death. Seeds coating with Fusarium isolates could be a biological component in the integrated striga management in West Africa. Key words: Biological control, Striga hermonthica, pathogenicity, germination, inhibition.

S35MT15P08
LINKING LABORATORY AND FIELD STUDIES OF DORMANCY IN STRIGA HERMONTICA: IS DELAYED PLANTING AN OPTION FOR INTEGRATED CONTROL?
Alistair J. Murdoch and Israel K. Dzomeku
Department of Agriculture, The University of Reading, Earley Gate, Reading RG6 6AR, UK
Email: a.j.murdoch@reading.ac.uk

Dormancy is an important attribute associated with the ability of seeds in the soil seed bank to germinate and emerge in response to favourable environmental conditions. A Sudanese seedlot of Striga hermonthica was subjected to prolonged conditioning (up to 19 weeks) at a wide range of temperatures (17.5°C to 35) and water potentials (0 to -2.25 MPa) and urea concentrations (0 to 3.16 mM). The non-linear empirical mathematical modelling approaches used by Kebrab & Murdoch to describe responses of Orobanche were tested on these data. Being a much more extensive data set than that available for Orobanche, the hypothesis that loss of primary dormancy is independent from induction of secondary dormancy could be tested for the first time and was rejected. Implications will be discussed. These models were then applied to seeds of the same Sudanese seedlot subjected to conditioning in the soil in a glasshouse, providing a reasonable fit. The final validation was a comparison with the behaviour of a naturally-occurring seedbank in the soil of Northern Ghana. With calibration, the effect of delayed planting on emergence of S. hermonthica could be modelled. While the modelling exercise contributes usefully to our understanding of the biology and population dynamics of the weed, it is also true that the rate of induction of secondary dormancy was too slow for delayed slowing to be a viable option for small-scale farmers.
This research focuses on three "model" exotic perennials: *Scoparious*, *Ailanthus altissima*, and *Cytisus scoparius*, a rapidly spreading persistent shrub; and *Akebia quinata*, a shade-tolerant perennial vine. Each of these species presents unique management problems in the ecological setting of the invasion because of their growth habits and interactions with the native plants they displace. The physiological attributes of the tree, shrub and vine are reviewed, as are the ecological settings for their invasion in protected and domesticated forests. The results of several experiments to control the three species are presented, as are other options for management. In each case, the objective was to control the exotic while facilitating the reestablishment of native plant communities. These perennial exotics were, and can be, effectively controlled; however, special precautions and control techniques must be used to preserve the protected and valued native plants in eastern U.S. forests.

Field afforestation is considered to be more difficult than reforestation of clear-cut forests, and many failures have been reported. Decades of agriculture have affected considerably the physical and chemical properties of the soil, as well as vegetation composition. In a field experiment established in southern Finland effects of various weed control treatments on the survival, height and volume growth of Silver birch (*Betula pendula*) were compared during 11 post-planting years. Mulch (piece of particle board disc), cover crop (clover) and various herbicides (terbuthylazine, chlorthiamid, sethoxydim, pendimethalin and dichlobenil) were compared with untreated control plots in a randomised block design replicated five times. Survival and height of individual weeds was assessed every three months for one year following treatment. The analysis demonstrated that reduced herbicide rates can significantly suppress the height growth of both buddleia and broom, indicating that rates could potentially be reduced without adversely affecting efficacy. It would appear that glyphosate not only acts faster than the mixture, but at the rates used is much more damaging to the weeds.

Dose response for herbicides applied to weeds in Kinleith forest – central north island, new zealand

Over the past few years there have been a number of studies in New Zealand to develop dose-response relationships between particular herbicides and weeds. While results from these trials implied that herbicide rates could be significantly decreased without adversely affecting efficacy, this idea has had limited field validation. Validation would require field studies to measure weed response to different herbicide rates. If this idea is to have practical value it is also important to consider effects of plant size and seasonal influences on dose-response relationships. This paper describes results from a field trial designed to evaluate the effect of reduced herbicide rates on efficacy against weeds at a forest site in Kinleith Forest. This trial investigated the effects of two herbicides (glyphosate and a terbuthylazine/hexazinone mixture), each at six rates (including an untreated control), on broom and buddleia. Treatments were applied to plots laid out using a randomised block design replicated five times. Survival and height of individual weeds was assessed every three months for one year following treatment. The analysis demonstrated that reduced herbicide rates can significantly suppress the height growth of both buddleia and broom, indicating that rates could potentially be reduced without adversely affecting efficacy. It would appear that glyphosate not only acts faster than the mixture, but at the rates used is much more damaging to the weeds.

Dose response and age-shift: a method of evaluating growth responses to herbicides applied to weeds in forestry field trials

It is often difficult to evaluate economic responses to forest silvicultural treatments such as weed control on the basis of early experimental results. A simple analysis of growth increments can often lead to misleading conclusions about the longevity of a treatment response because of associations between growth rates and tree size. To avoid this, treatments can be compared on the basis of equal size rather than equal age. A method of analyzing trials using an "age-shift" approach is presented. This method makes it possible to determine both the extent and longevity of any growth response. It also provides a straightforward economic analysis based on the assumption that an age shift earlier in the rotation can be translated into a reduction in rotation length while maintaining the same volume at harvest. An example of this analysis approach is presented using a weed-control trial in a young *Pinus radiata* stand in the Central North Island of New Zealand. The trial contains treatments in which herbicide is spot-sprayed around each tree at establishment. A control treatment and a range of spot-spray diameters maintained for varying durations are compared. The analysis demonstrates that weed control benefited tree growth for the first one to two years, and that there was no advantage in maintaining weed control beyond this. The best treatment provided a total gain of about one year's growth over the control. An economic evaluation of the benefits of weed control on this site based on these results is also presented.
Volume gains from suppression of herbaceous competition in Pinus taeda L. plantations are sometimes expressed as "percent gains." However, since these percentages decline over time, economists have difficulty in projecting revenues from percentage-gain values. The "age-shift" method (i.e. quantifying year advancements in growth due to herbicide applications) is a better approach since it is relatively independent of stand age. From an economic perspective, the best method of estimating the "age-shift" is by analyzing gains in merchantable volume. Age-shifts based on height or basal area measurements do not exactly equate to those based on merchantable volume. Data from 11 COMProject studies across the southern U.S. were graphed in terms of both percentage and age-shift gains. From ages 8 to 15 years, the age-shift estimates were relatively stable while the percentage gains dropped appreciably. In the presence of minor hardwood competition (basal area at 15 yr = 0.4 m2/ha; n=11), the age-shift gain (due to 3 to 5 years of herbaceous control) averaged 2.6 years but varied by site (low = 1.6; high = 3.8). In the presence of low hardwood competition (basal area = 1.9 m2/ha; n=4), the age-shift gain to herbaceous control was 1.9 years and in the presence of high hardwood competition (basal area = 5.8 m2/ha; n=7), the age-shift was 1.0 years. Although there were a few exceptions, the age-shift advantage due to reducing herbaceous competition tended to decline as hardwood competition increased. On three sites, there was no age-shift gain when woody competition was high.

Each year, a lot of Walnut and Almond seedlings are produced in forestry nurseries of Fars Province. The most important problem in these nurseries is controlling of weeds. In an experiment with 6 treatments in 4 replications in a RCBD design the losses due to annual grassy and broadleaved weeds in amygdalus communis L. were evaluated. The treatments were: (1) weedy (2) one hand – weeding (3) two hand – weeding (4) three hand - weeding (5) four hand – weeding (6) weekly weeding. The dominant species were about 40% broadleafed weeds and 60% grassy weeds. The results showed that weeding has a great effect on the growth of Almond seedlings. There were significant differences in the parameters of growth such as diameters of stems, lengths of plants and fresh weights of significant difference between two hand – weeding and three hand – weeding plots. It seemed that two hand – weeding during active growth period gives satisfactory control of weeds.